波流作用下黄河三角洲硬壳层液化渗流形成机制研究

冷浩 胡瑞庚 刘红军 王兆耀

冷浩, 胡瑞庚, 刘红军, 等. 2021.波流作用下黄河三角洲硬壳层液化渗流形成机制研究[J].工程地质学报, 29(6): 1779-1787. doi: 10.13544/j.cnki.jeg.2021-0169
引用本文: 冷浩, 胡瑞庚, 刘红军, 等. 2021.波流作用下黄河三角洲硬壳层液化渗流形成机制研究[J].工程地质学报, 29(6): 1779-1787. doi: 10.13544/j.cnki.jeg.2021-0169
Leng Hao, Hu Ruigeng, Liu Hongjun, et al. 2021. Mechanism of liquefaction seepage of upper seabed layer in the Yellow River Delta under wave-current via numerical simulation [J].Journal of Engineering Geology, 29(6): 1779-1787. doi: 10.13544/j.cnki.jeg.2021-0169
Citation: Leng Hao, Hu Ruigeng, Liu Hongjun, et al. 2021. Mechanism of liquefaction seepage of upper seabed layer in the Yellow River Delta under wave-current via numerical simulation [J].Journal of Engineering Geology, 29(6): 1779-1787. doi: 10.13544/j.cnki.jeg.2021-0169

波流作用下黄河三角洲硬壳层液化渗流形成机制研究

doi: 10.13544/j.cnki.jeg.2021-0169
基金项目: 

国家自然科学基金项目 41572247

中央高校基本科研业务费专项 202061027

详细信息
    作者简介:

    冷浩(1996-),男,硕士生,主要从事海洋岩土工程方面的研究. E-mail: lh4517@stu.ouc.edu.cn

    通讯作者:

    刘红军(1966-),男,博士,教授,博士生导师,主要从事海洋工程地质等方面的教学和科研. E-mail: hongjun@ouc.edu.cn

  • 中图分类号: P67

MECHANISM OF LIQUEFACTION SEEPAGE OF UPPER SEABED LAYER IN THE YELLOW RIVER DELTA UNDER WAVE-CURRENT VIA NUMERICAL SIMULATION

Funds: 

the National Natural Science Foundation of China 41572247

the Fundamental Research Funds for the Central Universities 202061027

  • 摘要: 波流作用于海床产生动态孔隙水压力,如不能及时消除会在其内部产生累积孔隙水压力,相邻两点间的孔隙水压力差值造成的水力梯度产生渗流力,渗流力引起水流动,海床表面为排水界面,从而会在海床内部形成向上的渗流力作用于泥沙颗粒上,使泥沙发生启动向海床表层运移,从而形成一定范围的粗颗粒层。本文采用数值模拟对不同流速下的海床累积孔隙水压力进行了研究,同时分析了硬壳层的存在对海床累积孔隙水压力的影响规律,根据取得的不同流速下海床内部的累积孔隙水压力值,计算海床任意位置处的渗流压力梯度,采用王虎等(2014)推导建立的海床临界冲刷深度的计算方法,分析不同流速下的硬壳层形成深度。结果表明: 海流流向与波浪行进方向一致时,对累积孔隙水压力起促进作用,流速越大累积孔隙水压力越大,反之对累积孔隙水压力有抑制作用。表面硬壳层的存在会显著促进累积孔压的消散,累积孔隙水压力沿深度分布的极值均出现在下层原始海床中,流速U0=0m ·s-1时硬壳层厚度由1m增加到3m,极值点深度下降了1.38m。累积孔隙水压力引起的渗流力对于海床泥沙启动影响显著,在流速U0=0m ·s-1U0=1m ·s-1时泥沙启动深度均为海床1.5m深度处,并且海流流向与波浪行进方向一致时,会产生较大ΔPL值带动较粗的泥沙颗粒至海床表层,但对泥沙启动的最大深度影响不大。
  • 图  1  原位CPT测量结果

    Figure  1.  In-situ CPT measured results

    图  2  泥沙颗粒受力情况

    Figure  2.  Stress of sediment particles

    图  3  液化渗流模式下硬壳层的形成(王虎等,2019)

    Figure  3.  Formation of the upper seabed layer under liquefaction seepage model(Wang et al., 2019)

    图  4  累积孔隙水压力随时间的变化(z=-0.085m)

    Figure  4.  Variation of residual pure water pressure with time

    图  5  波流作用下累积孔隙水压力沿深度分布随时间的变化

    Figure  5.  Variation of residual pore water distribution along depth with time under wave and current action

    图  6  波流联合作用不同流速下累积孔隙水压力沿深度分布

    Figure  6.  Vertical distribution of residual pore water pressure for different velocity under wave and current action

    图  7  波流联合作用不同硬壳层厚度对累积孔隙水压力的影响(t=120min)

    a. 硬壳层厚度1m; b. 硬壳层厚度2m; c. 硬壳层厚度3m

    Figure  7.  Effect of hard shell thickness on cumulative pore water pressure under wave and current action

    图  8  不同流速下切应力沿深度变化

    a. 流速U0=0m ·s-1; b. 流速U0=1m ·s-1

    Figure  8.  Shear stress changes with depth at different velocity

    表  1  波流参数与海床土体参数取值

    Table  1.   Wave-current parameters and seabed soil parameters

    波流参数
    周期T/s 5
    波高H/m 2
    水深d/m 10
    流速U0/m·s-1 -2,-1,0,1,2
    海床土体参数
    土体参数 原始海床 硬壳层
    密度ρ/×103 kg·m-3 1.82 2.01
    孔隙度n 0.49 0.41
    渗透系数k/×10-5m·s-1 10 1
    泊松比υ 0.3 0.3
    饱和度Sr 1 1
    剪切模量G/MPa 0.50 0.58
    中值粒径d50/mm 0.041
    固结系数CV/m2·s-1 1.25×10-4 1.45×10-3
    下载: 导出CSV

    表  2  相关计算参数及结果

    Table  2.   Relevant calculation parameters and results

    流速/m·s-1 深度/m 渗流压力梯度ΔPL/kPa·m-1 床面最大切应力τm/Pa 临界启动切应力τs/Pa
    0 0 12.970 1.90 0.22
    -0.5 12.330 1.76 0.26
    -1.0 5.880 1.55 0.66
    -1.5 0.380 1.38 1.00
    1 0 23.540 1.90 -0.43
    -0.5 14.280 1.76 0.14
    -1.0 8.940 1.55 0.47
    -1.5 2.640 1.38 0.86
    2 0 38.130 1.90 -1.33
    -0.5 25.820 1.76 -0.57
    -1.0 12.150 1.55 0.27
    -1.5 0.946 1.38 0.30
    下载: 导出CSV
  • Cao Z G,Wang Y L,Guo Z,et al. 2019. Study on the sediment initiation considering the seepage in the swash zone[J]. Advances in Water Science,30 (4): 568-580. http://en.cnki.com.cn/Article_en/CJFDTotal-SKXJ201904013.htm
    Chang F Q, Jia Y G, Zhang J, et al. 2009. Soil property and liquefaction process of hard shell seams at subaqueous delta of Yellow River[J]. Journal of Engineering Ggology, 17 (3): 349-356. http://www.cnki.com.cn/Article/CJFDTotal-GCDZ200903012.htm
    Cheng N S, Chiew Y M. 1999. Incipient sediment motion with upward seepage[J]. Journal of Hydraulic Research, 37 (5): 665-681. doi: 10.1080/00221689909498522
    Cheng Y Z, Jiang C B, Pan Y, et al. 2012. Effect of wave-induced seepage force on incipient sediment motion[J]. Advances in Water Science, 23 (2): 256-262. http://en.cnki.com.cn/Article_en/CJFDTOTAL-SKXJ201202019.htm
    Dou G R, Dou X P, Li T L, et al. 2001. Law of sediment incipient motion under wave action[J]. Science in China: Ser E, 31 (6): 566-573.
    Duan Z, Dong C X, Zheng W J, et al. 2020. Liquefaction mechanism of sandy silt of terrace under landslide impact[J]. Journal of Engineering Geology, 28 (6): 1329-1338. http://www.researchgate.net/publication/341495877_Liquefaction_mechanism_of_terrace_sandy_silt_under_landslide_impact
    Hu R G, Liu H J, Shi W. 2021. Mechanism of silty seabed residual liquefaction understanding waves[J]. Chinese Journal of Geotechnical Engineering, 43 (7): 1228-1237.
    Hu R G, Yu P, Wang Z Y, et al. 2020. Pore pressure response and residual liquefaction of two-layer silty seabed under standing waves[J]. Ocean Engineering, 218: 108176. doi: 10.1016/j.oceaneng.2020.108176
    Hsu H C, Chen Y Y, Hus J R C, et al. 2009. Nonlinear water waves on uniform current in lagrangian coordanites[J]. Journal of Nonlinear Mathematical Physics, 16(1): 47-61. doi: 10.1142/S1402925109000054
    Jeng D S, Zhao H Y. 2014. Two-dimensional model for accumulation of pore pressure in marine sediments[J]. Journal of Waterway Port Coastal and Ocean Engineering, 141(3): 04014042. http://www98.griffith.edu.au/dspace/bitstream/10072/64009/1/97276_1.pdf
    Jia Y G, Dong H G, Shan H X, et al. 2007. Study of characters and formation mechanism of hard crust on tidal flat of Yellow River estuary[J]. Rock and Soil Mechanics, 28 (10): 2029-2035. http://www.researchgate.net/publication/285850922_Study_of_characters_and_formation_mechanism_of_hard_crust_on_tidal_flat_of_Yellow_River_estuary
    Li J, Jeng D S. 2008. Response of a porous seabed around breakwater heads[J]. Ocean Engineering, 35 (8): 864-886. http://www.onacademic.com/detail/journal_1000034031040810_5e69.html
    Li Z H, Jia Y G, Bo J S. 2019. Review of academic annual symposium of engineering investigation specialized committee of the Chinese Institute of Seismology in 2019 and the 4th symposium on development strategies of marine engineering geology[J]. Journal of Engineering Geology, 27 (6): 1483-1487. http://en.cnki.com.cn/Article_en/CJFDTotal-GCDZ201906031.htm
    Liao C C. 2016. A coupling model for interaction between wave and sandy seabed[D]. Shanghai: Shanghai Jiao Tong University.
    Liu H J, Wang X H, Jia Y G, et al. 2005. Experimental study on liquefaction properties and pore-water pressure model of saturated silt in Yellow River Delta[J]. Rock and Soil Mechanics, 26 (S2): 83-87. http://www.cnki.com.cn/Article/CJFDTotal-YTLX2005S2021.htm
    Liu X L, Lu Y, Wang Y, et al. 2020. Exploration of marine resources and marine engineering geology: Summary on the 2nd international symposium on marine engineering geology[J]. Journal of Engineering Geology, 28 (1): 169-177.
    Liu X L, Zhou J, Cui H N, et al. 2018. Characteristics of wave and current-induced residual liquefaction in two-layered sandy seabed[J]. Periodical of Ocean University of China, 48 (11): 26-32. http://en.cnki.com.cn/Article_en/CJFDTotal-QDHY201811004.htm
    Liu Z G. 2008. Study on wave-induced response of progressive pore pressure and liquefaction in seabed[D]. Dalian: Dalian University of Technology.
    Qian N, Wan Z H. 2003. Mechanics of sediment transport[M]. Beijing: Sciences Press.
    Sakai T, Hatanaka K, Mase H, et al. 1992. Wave-Induced effective stress in seabed and its momentary liquefaction[J]. Journal of Waterway Port Coastal and Ocean Engineering, 118 (2): 202-206. doi: 10.1061/(ASCE)0733-950X(1992)118:2(202)
    Sassa S, Sekiguchi H, Miyamoto J. 2001. Analysis of progressive liquefaction as a moving-boundary problem[J]. Géotechnique, 51 (10): 847-857. doi: 10.1680/geot.2001.51.10.847
    Sumer B M, Kirca V S O, Freds E J. 2012. Experimental validation of a mathematical model for seabed liquefaction under waves[J]. International Journal of Offshore and Polar Engineering, 22 (2): 133-141.
    Tsai C. 1995. Wave-induced liquefaction potential in a porous seabed in front of a breakwater[J]. Ocean Engineering, 22 (1): 1-18. doi: 10.1016/0029-8018(94)00042-5
    Wang H, Liu H J, Wang X H. 2014. Mechanism of seabed scour and its critical condition estimation by considering seepage forces[J]. Advances in Water Science, 25 (1): 115-121. http://en.cnki.com.cn/Article_en/CJFDTotal-SKXJ201401016.htm
    Wang H, Su L, Bai Y C. 2019. Research progress on consolidated silt in estuarine and coastal areas[J]. Advances in Water Science, 30 (4): 601-612. http://www.researchgate.net/publication/343240915_Research_Progress_on_Consolidated_Silt_in_Estuarine_and_Coastal_Areas
    Wang H. 2012. Mechanism of wave-induced instability of the silty seabed in the Yellow River Delta[D]. Qingdao: Ocean University of China.
    Yang Z N, Cui Y X, Guo L, et al. 2021. Semi-empirical correlation of shear wave velocity prediction in the Yellow River Delta based on CPT[J]. Marine Georesources & Geotechnology: 13 : 1-17.
    曹志刚, 王逸伦, 国振, 等. 2019. 考虑渗流效应的冲流带泥沙启动机理研究[J]. 水科学进展, 30 (4): 568-580. https://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ201904013.htm
    常方强, 贾永刚, 张建, 等. 2009. 黄河水下三角洲硬壳层特征及其液化过程研究[J]. 工程地质学报, 17 (3): 349-356. doi: 10.3969/j.issn.1004-9665.2009.03.011
    程永舟, 蒋昌波, 潘昀, 等. 2012. 波浪渗流力对泥沙启动的影响[J]. 水科学进展, 23 (2): 256-262.
    窦国仁, 窦希萍, 李褆来. 2001. 波浪作用下泥沙的启动规律[J]. 中国科学E辑: 技术科学, 31 (6): 566-573.
    段钊, 董晨曦, 郑文杰, 等. 2020. 滑坡冲击作用下的阶地砂质粉土层液化机理[J]. 工程地质学报, 28 (6): 1329-1338. doi: 10.13544/j.cnki.jeg.2019-491
    胡瑞庚, 刘红军, 时伟. 2021. 驻波作用下粉土海床累积液化机制分析[J]. 岩土工程学报, 43 (7): 1228-1237. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202107010.htm
    贾永刚, 董好刚, 单红仙, 等. 2007. 黄河三角洲粉质土硬壳层特征及成因研究[J]. 岩土力学, 28 (10): 2029-2035. doi: 10.3969/j.issn.1000-7598.2007.10.004
    李正辉, 贾永刚, 薄景山. 2019. 中国地震学会工程勘察专业委员会2019学术年会暨第四届海洋工程地质发展战略研讨会回顾[J]. 工程地质学报, 27 (6): 1483-1487. doi: 10.13544/j.cnki.jeg.2019-380
    廖晨聪. 2016. 波浪与砂质海床相互作用的耦合模型[D]. 上海: 上海交通大学.
    刘红军, 王小花, 贾永刚, 等. 2005. 黄河三角洲饱和粉土液化特性及孔压模型试验研究[J]. 岩土力学, 26 (S2): 83-87. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2005S2021.htm
    刘小丽, 周杰, 崔浩男, 等. 2018. 波流耦合作用下双层砂质海床累积液化特征数值分析[J]. 中国海洋大学学报(自然科学版), 48 (11): 26-32. https://www.cnki.com.cn/Article/CJFDTOTAL-QDHY201811004.htm
    刘晓磊, 陆杨, 王胤, 等. 2020. 海洋资源开发与海洋工程地质——第二届国际海洋工程地质学术研讨会(ISMEG 2019)总结[J]. 工程地质学报, 28 (1): 169-177. doi: 10.13544/j.cnki.jeg.2019-493
    刘占阁. 2008. 波浪作用下海床累积孔隙水压力响应与液化分析[D]. 大连: 大连理工大学.
    钱宁, 万兆惠. 2003. 泥沙运动力学[M]. 北京: 科学出版社.
    王虎, 刘红军, 王秀海. 2014. 考虑渗流力的海床临界冲刷机理及计算方法[J]. 水科学进展, 25 (1): 115-121. https://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ201401016.htm
    王虎, 粟莉, 白玉川. 2019. 河口海岸铁板砂研究进展[J]. 水科学进展, 30 (4): 601-612. https://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ201904016.htm
    王虎. 2012. 波浪作用下黄河三角洲粉质土海床不稳定机制研究[D]. 青岛: 中国海洋大学.
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  146
  • HTML全文浏览量:  19
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-29
  • 修回日期:  2021-05-31
  • 刊出日期:  2021-12-25

目录

    /

    返回文章
    返回