改进的Green-Ampt模型及其试验验证

陈骄锐 李绍红 罗晓辉 朱帅润 吴礼舟

陈骄锐, 李绍红, 罗晓辉, 等. 2023. 改进的Green-Ampt模型及其试验验证[J]. 工程地质学报, 31(5): 1728-1737. doi: 10.13544/j.cnki.jeg.2021-0171
引用本文: 陈骄锐, 李绍红, 罗晓辉, 等. 2023. 改进的Green-Ampt模型及其试验验证[J]. 工程地质学报, 31(5): 1728-1737. doi: 10.13544/j.cnki.jeg.2021-0171
Chen Jiaorui, Li Shaohong, Luo Xiaohui, et al. 2023. An improved Green-Ampt model and its experimental verification[J]. Journal of Engineering Geology, 31(5): 1728-1737. doi: 10.13544/j.cnki.jeg.2021-0171
Citation: Chen Jiaorui, Li Shaohong, Luo Xiaohui, et al. 2023. An improved Green-Ampt model and its experimental verification[J]. Journal of Engineering Geology, 31(5): 1728-1737. doi: 10.13544/j.cnki.jeg.2021-0171

改进的Green-Ampt模型及其试验验证

doi: 10.13544/j.cnki.jeg.2021-0171
基金项目: 

国家重点研发计划 2018YFC1504702

国家自然科学基金面上项目 41672282

详细信息
    作者简介:

    陈骄锐(1997-),女,硕士生,主要从事岩土工程研究. E-mail: 1098099261@qq.com

    通讯作者:

    吴礼舟(1975-),男,博士,教授,博士生导师,从事地质工程的教学和研究. E-mail: wulizhou07@cdut.cn

  • 中图分类号: P642.3

AN IMPROVED GREEN-AMPT MODEL AND ITS EXPERIMENTAL VERIFICATION

Funds: 

National Key Research and Development Program 2018YFC1504702

the National Natural Science Foundation of China 41672282

  • 摘要: 鉴于Green-Ampt模型过于简化、难以反映实际入渗特征,且其假设与实际入渗规律不符,本文为了弥补Green-Ampt模型的不足,提出了一种改进的Green-Ampt模型。提出的模型考虑了含水率与土体深度的关系,将土壤剖面划分为饱和区、过渡区以及天然区,土柱试验验证了所提出模型的准确性,也证实了入渗过程中过渡区的存在。试验结果表明:Green-Ampt模型计算值明显偏离实际累计入渗量,提出的模型总体上更接近实际累计入渗量。将该模型用于非饱和斜坡稳定性分析,计算结果揭示了Green-Ampt模型低估了斜坡的稳定性系数。提出的改进Green-Ampt模型为分析降雨滑坡风险提供参考。
  • 图  1  降雨时的边坡

    Figure  1.  A slope during rainfall

    图  2  土壤剖面体积含水率与深度关系

    a. 提出的模型;b. Green-Ampt模型

    Figure  2.  Relationship between volume moisture content and depth of soil profile

    图  3  土壤剖面渗透系数与深度的关系

    a. 提出的模型;b. Green-Ampt模型

    Figure  3.  Relationship between permeability coefficient and depth of soil profile

    图  4  次生黄土颗粒级配曲线

    Figure  4.  Grain gradation curve of secondary loess

    图  5  试验装置设计

    1. 水管;2. 控制阀;3. 水箱;4. 水;5. 排水管;6. 传感器;7. 土壤;8. 砂石;9. 数据采集装置;10. 计算机;11. 模型箱

    Figure  5.  Test device design

    图  6  试验装置实物图

    Figure  6.  Physical drawing of the test apparatus

    图  7  水分测定装置

    a. EC-5型体积含水率传感器;b. EM50数据采集仪

    Figure  7.  Moisture measurement device

    图  8  含水率监测结果

    Figure  8.  Monitoring results of volumetric moisture content

    图  9  累计入渗量时间的关系

    Figure  9.  The relationship between cumulative infiltration and time

    图  10  提出的模型得到的稳定性系数

    a. 坡度为10°;b. 坡度为20°;c. 坡度为30°

    Figure  10.  The stability coefficient obtained by the presented model

    图  11  提出的模型得到的稳定性系数

    a. 降雨强度为0.0035 cm·min-1;b. 降雨强度为0.0065 cm·min-1;c. 降雨强度为0.0095 cm·min-1

    Figure  11.  The stability coefficient obtained by the presented model

    图  12  提出的模型与Green-Ampt模型结果的比较

    Figure  12.  Comparison of results between the proposed model and the Green-Ampt model

    图  13  降雨过程中最小稳定性系数的变化

    a. 坡度的影响;b. 降水强度的影响

    Figure  13.  Variation of minimum stability coefficient during rainfall

    表  1  基本物理指标

    Table  1.   Basic physical indicators

    基本物理指标 干密度ρd/g·cm-3 比重Gs 孔隙比e 天然含水率w/% 残余含水wr/% 饱和含水ws/%
    次生黄土 1.35 2.76 1.04 8.68 2.3 43
    下载: 导出CSV

    表  2  计算参数

    Table  2.   Parameters for DEM simulations

    参数 提出的模型 Green-Ampt模型
    α/(°) 0 0
    q/cm·min-1 0.0035 0.0035
    sf/cm 63.08 63.08
    θs/% 44 44
    θi/% 11 11
    ks/cm·min-1 6.00×10-4 6.00×10-4
    ki/cm·min-1 7.80×10-5
    下载: 导出CSV

    表  3  提出的模型与经典的Green-Ampt模型的精度

    Table  3.   The accuracy of the proposed model and the Green-Ampt model

    MAE/cm3 MARE/% RMSE/cm3
    提出的模型 10.97 5.63 13.985
    Green-Ampt模型 42.73 8.06 46.07
    下载: 导出CSV

    表  4  计算参数

    Table  4.   Parameters for analysis

    参数 提出的模型 Green-Ampt模型
    α/(°) 10,20,30
    q/cm·min-1 0.0035,0.0065,0.0095
    sf/cm 63.057
    θs/% 44 44
    θi/% 11 11
    θr/% 2.3 2.3
    ks/cm·min-1 6.00×10-4 6.00×10-4
    ki/cm·min-1 7.80×10-5
    c/kPa 10 10
    φ/(°) 35 35
    γ/kN·m-3 20.2 20.2
    下载: 导出CSV
  • Bishop A W, Alpan I, Blight G E, et al. 1961. Factors controlling the strength of partly saturated cohesive soils[C]//Research Conference on Shear Strength of Cohesive Soils. ASCE.
    Brakensiek D L, Onstad C A. 1977. Parameter estimation of the Green and Ampt Infiltration Equation[J]. Water Resources Research, 13 (6): 1009-1012. doi: 10.1029/WR013i006p01009
    Brooks R H, Corey A T. 1964. Properties of porous media affecting fluid flow[J]. Journal of the Irrigation & Drainage Division Proceedings of the American Society of Civil Engineers, 92 (2): 61-88.
    Chen L, Young M H. 2006. Green-Ampt infiltration model for sloping surfaces[J]. Water Resources Research, 42 (7): 887-896.
    Cheng Y K, Liu C Y, Yan S, et al. 2018. Modeling of transient flow in unsaturated geomaterials for rainfall-induced landslides Using a Novel Spacetime Collocation Method[J]. Geofluids: 1-16.
    Collins B D, Znidarcic D. 2004. Stability analyses of rainfall induced landslides[J]. Journal of Geotechnical and Geoenvironmental Engineering, 130 (4): 362-372. doi: 10.1061/(ASCE)1090-0241(2004)130:4(362)
    Colman E A, Bodman G B. 1945. Moisture and energy conditions during downward entry of water into moist and layered soils[J]. Soil Science Society of America Journal, 9 (C): 3-11. doi: 10.2136/sssaj1945.036159950009000C0001x
    Dormand J R, Prince P J. 1980. A family of embedded Runge-Kutta Formulae[J]. Journal of Computational and Applied Mathematics, 6 (1): 19-26. doi: 10.1016/0771-050X(80)90013-3
    Fredlund D G, Morgenstern N R, Widger R A. 1978. The shear strength of unsaturated soils[J]. Canadian Geotechnical Journal, 15 : 313-321. doi: 10.1139/t78-029
    Green W H, Ampt G A. 1911. Studies on Soil Phyics[J]. The Journal of Agricultural Science, 4 (1): 1-24. doi: 10.1017/S0021859600001441
    Hillel D, Gardner W R. 1970. Steady infiltration into crust-topped profiles[J]. Soil Science, 108 (2): 69-76.
    Li S H, Wu L Z, Luo X H. 2020. A novel method for locating the critical slip surface of a soil slope[J]. Engineering Applications of Artificial Intelligence, 94: 103733. doi: 10.1016/j.engappai.2020.103733
    Liu C Z, Chen C L. 2020. Achievements and countermeasures in risk reduction of geological disasters in China[J]. Journal of Engineering Geology, 28 (2): 375-383.
    Mein R G, Larson C L. 1973. Modeling infiltration during a steady rain[J]. Water Resources Research, 9 (2): 384-394. doi: 10.1029/WR009i002p00384
    Mishra S K, Kumar S R, Singh V P. 1999. Calibration and validation of a general infiltration model[J]. Hydrological Processes, 13 (11): 1691-1718. doi: 10.1002/(SICI)1099-1085(19990815)13:11<1691::AID-HYP818>3.0.CO;2-W
    Muntohar A S, Liao H J. 2010. Rainfall infiltration: infinite slope model for landslides triggering by rainstorm[J]. Natural Hazards, 54 : 967-984. doi: 10.1007/s11069-010-9518-5
    Neuman S P. 1976. Wetting front pressure head in the infiltration model of Green and Ampt[J]. Water Resources Research, 12 (3): 564-566. doi: 10.1029/WR012i003p00564
    Pan Y L, Jian W X. 2020. A study on the rainfall infiltration of granite residual soil slope with an improved Green-Amptmodel[J]. Rock and Soil Mechanics, 41 (8): 2685-2692.
    Peng Z Y, Huang J S, Wu J W, et al. 2012. Modification of Green-Ampt model based on the stratification hypothesis[J]. Advances in Water Science, 23 (1): 59-66.
    Silvestri V. 2006. A three-dimensional slope stability problem in clay[J]. Canadian Geotechnical Journal, 43 (2): 224-228. doi: 10.1139/t06-001
    Song Y F, Fan W, Li J, et al. 2020. Risk assessment of property loss caused by unstable slopes under different rainfall conditions—A case study of Xinglong Town of Zhenba County[J]. Journal of Engineering Geology, 28 (2): 401-411.
    van Genuchten M Th. 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal, 44 (5): 892-898. doi: 10.2136/sssaj1980.03615995004400050002x
    Vanapalli S K, Fredlund D G, Pufahl D E, et al. 1996. Model for the prediction of shear strength with respect to soil suction[J]. Canadian Geotechnical Journal, 33 : 379-392. doi: 10.1139/t96-060
    Wang W Y, Wang Z Y, Wang Q J, et al. 2003. Improvement and evaluation of the Green-Ampt model in loess soil[J]. Journal of Hydraulic Engineering, 34 (5): 30-34. doi: 10.3321/j.issn:0559-9350.2003.05.005
    Wu L Z, Liu G G, Wang L C, et al. 2016. Numerical analysis of 1 D coupled infiltration and deformation in layered unsaturated porous medium[J]. Environmental Earth Sciences, 75(9): 761. doi: 10.1007/s12665-016-5579-4
    Wu L Z, Selvadurai A P S, Zhang L M, et al. 2016. Poromechanical coupling influences on potential for rainfall-induced shallow landslides in unsaturated soils[J]. Advances in Water Resources, 98 : 114-121. doi: 10.1016/j.advwatres.2016.10.020
    Wu L Z, Zhang L M, Zhou Y, et al. 2018. Theoretical analysis and model test for rainfall-induced shallow landslides in the red-bed arearegion of Sichuan[J]. Bulletin of Engineering Geology and the Environment, 77 (4): 1343-1353. doi: 10.1007/s10064-017-1126-0
    Wu L Z, Zhu S R, Peng P J. 2020. Application of the Chebyshev spectral method to the simulation of groundwater flow and rainfall-induced landslides[J]. Applied Mathematical Modelling, 80 : 408-425. doi: 10.1016/j.apm.2019.11.043
    Xu Q. 2020. Understanding the landslide monitoring and early warning: Consideration to practical issues[J]. Journal of Engineering Geology, 28 (2): 360-374.
    Yao W M, Li C D, Zhan H B, et al. 2019. Time-dependent slope stability during intense rainfall with stratified soil water content[J]. Bulletin of Engineering Geology and the Environment, 78 : 4805-4819. doi: 10.1007/s10064-018-01437-3
    Ye S H, Shi Y L. 2018. Stability analysis of multi-stage high slope with loess under rainfall infiltration[J]. Journal of Engineering Geology, 26 (6): 1648-1656.
    Zhang J, Han T C, Dou H Q, et al. 2014. Analysis slope safety based on infiltration model based on stratified assumption[J]. Journal of Central South University(Science and Technology), (9): 3211-3218.
    Zhang S, Xu Q, Zhang Q. 2017. Failure characteristics of gently inclined shallow landslides in Nanjiang, southwest of China[J]. Engineering Geology, 217 : 1-11. doi: 10.1016/j.enggeo.2016.11.025
    Zhu J D, Yan H, Li S H, et al. 2019. Laboratory model experiment of landslides along loess mudstone interface induced by rainfall patterns[J]. Journal of Engineering Geology, 27 (3): 623-631.
    Zhu S R, Wu L Z, Peng J B. 2020. An improved Chebyshev semi-iterative method for simulating rainfall infiltration in unsaturated soils and its application to shallow landslides[J]. Journal of Hydrology: 125157.
    刘传正, 陈春利. 2020. 中国地质灾害防治成效与问题对策[J]. 工程地质学报, 28 (2): 375-383. doi: 10.13544/j.cnki.jeg.2019-232
    潘永亮, 简文星. 2020. 李林均等. 基于改进Green-Ampt模型的花岗岩残积土边坡降雨入渗规律研究[J]. 岩土力学, 41 (8): 2685-2692. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202008020.htm
    彭振阳, 黄介生, 伍靖伟, 等. 2012. 基于分层假设的Green-Ampt模型改进[J]. 水科学进展, 23 (1): 59-66. https://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ201201008.htm
    宋宇飞, 范文, 李军, 等. 2020. 不同降雨条件下不稳定斜坡财产损失风险评价——以镇巴县兴隆镇为例[J]. 工程地质学报, 28 (2): 401-411. doi: 10.13544/j.cnki.jeg.2019-255
    王文焰, 汪志荣, 王全九, 等. 2003. 黄土中Green-Ampt入渗模型的改进与验证[J]. 水力学报, 34 (5): 30-34. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB200305005.htm
    许强. 2020. 对滑坡监测预警相关问题的认识与思考[J]. 工程地质学报, 28 (2): 360-374. doi: 10.13544/j.cnki.jeg.2020-025
    叶帅华, 时轶磊. 2018. 降雨入渗条件下多级黄土高边坡稳定性分析[J]. 工程地质学报, 26 (6): 1648-1656. doi: 10.13544/j.cnki.jeg.2017-552
    张杰, 韩同春, 豆红强, 等. 2014. 基于分层假定入渗模型的边坡安全性分析[J]. 中南大学学报(自然科学版), (9): 3211-3218. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201409037.htm
    朱建东, 鄢好, 李绍红, 等. 2019. 黄土-泥岩接触面滑坡的两种雨型模型试验[J]. 工程地质学报, 27 (3): 623-631. doi: 10.13544/j.cnki.jeg.2018-139
  • 加载中
图(13) / 表(4)
计量
  • 文章访问数:  75
  • HTML全文浏览量:  11
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-30
  • 修回日期:  2021-08-23
  • 刊出日期:  2023-10-25

目录

    /

    返回文章
    返回