EVALUATION OF STRENGTH CHARACTERISTICS OF COMPACTED LOESS SUBJECTED TO FREEZE-THAW CYCLING BY WAVE VELOCITY
-
摘要: 如何评价冻融循环条件下压实黄土的力学特性是我国黄土高原挖填方工程设计中亟需解决的重要科学问题,为此,本文对冻融循环次数、含砂量、含盐量和含水率等几个关键影响因素进行研究,通过开展无侧限压缩试验,获得了压实黄土的单轴抗压强度(UCS)。同时还开展了压实黄土的波速测试,分析了不同冻融循环条件下压实黄土的剪切波波速(VS)和压缩波波速(VP)的变化规律。研究结果表明:(1)随着冻融循环次数的增加,黄土试样的剪切波波速和压缩波波速减小,且含砂量较低的试样的波速降低更加明显;(2)含盐量高的黄土试样在经历第1次冻融循环后波速大幅衰减,但继续冻融循环时,其强度降低幅度不大;(3)随着冻融循环次数和含水率的增加,土样破坏的形式呈现出由脆性破坏向塑性破坏过渡的趋势;(4)根据试验结果,研究建立了黄土波速与单轴抗压强度的经验关系式,研究成果为评价冻融循环作用下现场压实黄土的强度劣化提供了新思路。Abstract: Characterizing the mechanical properties of loess while considering the influence of freeze-thaw cycling is of great importance in geotechnical designs at Loess Plateau in China. Several key influencing factors are studied in a collective manner. They include the number of freeze-thaw cycles, the sand content, the salt content and the water content. In this paper,we carry out the unconfined compression tests,and obtain the uniaxial compressive strength of loess. At the same time,we also measure the shear wave velocity and the compression wave velocity of loess specimens subjected to different freeze-thaw cycles. The following are found: (1)the shear wave velocity and compression wave velocity decrease with an increase of freeze-thaw cycles. The reduction is more pronounced in loess samples with lower sand content. (2)The velocity of loess with high salt content decreases after the first freeze-thaw cycle,and it becomes less significant with further increase of the freeze-thaw cycles. (3)With the increase of freeze-thaw cycles and water content,the failure forms of soil samples change from brittle failure to plastic failure. (4)Based on the test results,we propose an empirical correlation between the wave velocity and the uniaxial compressive strength of loess. The research provides a new insight into evaluation of strength deterioration of loess under freeze-thaw cycle.
-
表 1 文献中含盐分黄土的离子种类和离子浓度
Table 1. Ion types and concentrations of saline loess in literature
文献中含盐分的黄土 离子种类和离子浓度/mg·g-1 Cl- SO42- K+ Na+ Ca2+ Mg2+ 渭北黄土(张蓉蓉等,2018) 0.47 0.71 0.01 0.23 0.10 0.05 黑方台黄土(Zhang et al.,2018) 2.63 2.45 0.02 2.52 0.20 0.09 表 2 试验材料的物理性质
Table 2. Physical properties of tested materials
土样 不均匀系数 平均粒径/um 塑限/% 塑性指数 比重 黄土 — 13 17.7 9.9 2.65 石英砂 2.0 182 — — 2.64 表 3 重塑黄土波速-强度拟合曲线参数表
Table 3. Parameter table of wave velocity-strength fitting curve of remolded loess
土样类型 含砂重塑黄土 含盐重塑黄土 经验系数 α β α β P波 1.94 0.01 6.77 0.007 S波 2.66 0.02 5.96 0.015 -
Bao W X,Xie Y L,Yang X H. 2006. A laboratory test study on water and salt migration in natural saline soil and associated shear strength changes under freezing and thawing cycles[J]. Journal of Engineering Geology,14 (3): 380-385. Bi G Q, Zhang X, Li G Y, et al. 2010. Experiment of impact of freezing-thawing cycle on physical-mechanical properties of loess[J]. Journal of Lanzhou University of Technology, 36 (2): 114-117. Bing H, He P. 2009. Influence of freeze-thaw cycles on physical and mechanical properties of salty soil[J]. Chinese Journal of Geological Engineering, 31 (12): 1958-1962. Bing H, He P. 2010. Experimental investigations on the influence of cyclical freezing and thawing on physical and mechanical properties of saline soil[J]. Environmental Earth Sciences, 64 (2): 431-436. Brignoli E G M, Gotti M, Stokoe K H. 1996. Measurement of shear waves in laboratory specimens by means of piezoelectric transducers[J]. Geotechnical Testing Journal, 19 (4): 384-397. doi: 10.1520/GTJ10716J Chen Y M, Zhou Y G, Huang B. 2006. International parallel test on the measurement of shear modulus of sand using bender elements[J]. Chinese Journal of Geotechnical Engineering, 28 (7): 874-880. Dong X H, Zhang A J, Lian J B, et al. 2010. Laboratory study on shear strength deterioration of loess with long-term freezing-thawing cycles[J]. Journal of Engineering Geology, 18 (6): 887-893. Ji M X, Chen Y M, Huang B. 2003. Method for precisely determining shear wave velocity of soil from bender element tests[J]. Chinese Journal of Geotechnical Engineering, 25 (6): 732-736. doi: 10.3321/j.issn:1000-4548.2003.06.019 Jin D W, Niu F J, Chen Z X, et al. 2004. Simulation analysis for model experiment of frozen soil slope[J]. Journal of Earth Sciences and Environment, 26 (1): 29-32. Lei X Y. 1998. Grain-size analysis and genesis of loess in the Qinling Mountains[J]. Acta Geologica Sinica, 72 (2): 178-188. Leong E C, Cahyadi J, Rahardjo H. 2009. Measuring shear and compression wave velocities of soil using bender-extender elements[J]. Canadian Geotechnical Journal, 46 (7): 792-812. doi: 10.1139/T09-026 Li L P, Lan H X, Peng J B. 2020. Loess erosion patterns on a cut-slope revealed by LiDAR scanning[J]. Engineering Geology, 268: 105516. doi: 10.1016/j.enggeo.2020.105516 Li Y C, Yang J L, Lan J W, et al. 2019. Experimental study on age effect and influence factors of slag-cement-bentonite's shear modulus[J]. Journal of Hunan University(Natural Science), 46 (9): 133-140. Ling X Z, Zhang F, Li Q L, et al. 2015. Dynamic shear modulus and damping ratio of frozen compacted sand subjected to freeze-thaw cycle under multi-stage cyclic loading[J]. Soil Dynamics and Earthquake Engineering, 76 : 111-121. doi: 10.1016/j.soildyn.2015.02.007 Liu X, Qin H, Lan H X, 2020. On the relationship between soil strength and wave velocities of sandy loess subjected to freeze-thaw cycling[J]. Soil Dynamics and Earthquake Engineering, 136: 106216. doi: 10.1016/j.soildyn.2020.106216 Liu X, Yang J. 2018. Shear wave velocity in sand: effect of grain shape[J]. Géotechnique, 68 (8): 742-748. doi: 10.1680/jgeot.17.T.011 Liu X, Zhang N, Lan H X. 2019. Effects of sand and water contents on the small-strain shear modulus of loess[J]. Engineering Geology, 260(3): 105202. Liu Z, Liu F, Ma F, et al. 2016. Collapsibility, composition, and microstructure of loess in China[J]. Canadian Geotech Journal, 53 (4): 673-686. doi: 10.1139/cgj-2015-0285 Qiao Y S, Guo Z T, Hao Q Z, et al. 2006. Grain size characteristics of Miocene loess-paleosol sequence and its significance for genesis[J]. Scientia Sinica(Terrae), 36 (7): 646-653. Shirley D J. 1978. An improved shear wave transducer[J]. The Journal of the Acoustical Society of America, 63 (5): 1643-1645. doi: 10.1121/1.381866 Sun J Z. 1980. On the genesis of the loesses in China[J]. Chinese Journal of Geological, (2): 194-200. Viggiani G, Atkinson J H. 1995. Interpretation of bender element tests[J]. Géotechnique, 45 (1): 149-154. doi: 10.1680/geot.1995.45.1.149 Wang T X, Luo S F, Liu X J. 2010. Testing study of freezing-thawing strength of unsaturated undisturbed loess considering influence of moisture content[J]. Rock and Soil Mechanics, 31 (8): 2378-2382. Wang Y S, Li Y Z, Xiang F. 2003. The ganzi loess origin in the west Sichuan plateau[J]. Journal of Geomechanics, 9 (1): 91-96. Wu W Z, Liu F G, Chen Q, et al. 2009. Study on soil erosion types in three-river headstream region[J]. Journal of Earth Sciences and Environment, 31 (4): 423-426. Yang J, Liu X. 2016. Shear wave velocity and stiffness of sand: the role of non-plastic fines[J]. Géotechnique, 66 (6): 500-14. doi: 10.1680/jgeot.15.P.205 Ye W J, Yang G S, Peng J B, et al. 2012. Test research on mechanism of freezing and thawing cycle resulting in loess slope spalling hazards in Luochuan[J]. Chinese Journal of Rock Mechanics and Engineering, 31 (1): 199-205. Zhang F Y, Wang G H, Kamai T, et al. 2013. Undrained shear behavior of loess saturated with different concentrations of sodium chloride solution[J]. Engineering Geology, 155 (6): 69-79. Zhang J, Li P, Li T L, et al. 2021. Discontinuous deformation simulation of loess sedimentation process and microstructure model[J]. Journal of Engineering Geology, 29 (4): 1199-1206. Zhang R R, Fan H M, Guo J Y, et al. 2018. Spatial distribution of farmland soil salinization and its influencing factors in Weibei area of Shaanxi Province[J]. Acta Agricultural Boreali-Occidentalis Sinica, 27 (3): 440-450. Zhao W, Wang X J, Xu Z X, et al. 2021. Experimental study on natural evolution characteristics of coarse-grained soil slope in seasonal frozen soil region[J]. Journal of Engineering Geology, 29 (5): 1497-1506. Zhou Y G, Chen Y M, Ke H. 2005. Improvement of simplified procedure for liquefaction potential evaluation of sands by shear wave velocity[J]. Chinese Journal of Rock Mechanics and Engineering, 24 (13): 2369-2375. 包卫星, 谢永利, 杨晓华. 2006. 天然盐渍土冻融循环时水盐迁移规律及强度变化试验研究[J]. 工程地质学报, 14 (3): 380-385. http://www.gcdz.org/article/id/9047 毕贵权, 张侠, 李国玉, 等. 2010. 冻融循环对黄土物理力学性质影响的试验[J]. 兰州理工大学学报, 36 (2): 114-117. https://www.cnki.com.cn/Article/CJFDTOTAL-GSGY201002028.htm 邴慧, 何平. 2009. 冻融循环对含盐土物理力学性质影响的试验研究[J]. 岩土工程学报, 31 (12): 1958-1962. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200912029.htm 陈云敏, 周燕国, 黄博. 2006. 利用弯曲元测试砂土剪切模量的国际平行试验[J]. 岩土工程学报, 28 (7): 874-880. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200607012.htm 董晓宏, 张爱军, 连江波, 等. 2010. 长期冻融循环引起黄土强度劣化的试验研究[J]. 工程地质学报, 18 (6): 887-893. http://www.gcdz.org/article/id/8741 姬美秀, 陈云敏, 黄博. 弯曲元试验高精度测试土样剪切波速方法[J]. 岩土工程学报, 25 (6): 732-736. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200306019.htm 靳德武, 牛富俊, 陈志新, 等. 2004. 冻土斜坡模型试验相似分析[J]. 地球科学与环境学报, 26 (1): 29-32. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX200401007.htm 雷祥义. 1998. 秦岭黄土的粒度分析及其成因初步探讨[J]. 地质学报, 72 (2): 178-188. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE199802009.htm 李育超, 杨佳林, 兰吉武, 等. 2019. 矿渣-水泥-膨润土剪切模量龄期效应及其影响因素的试验研究[J]. 湖南大学学报(自然科学版), 46 (9): 133-140. https://www.cnki.com.cn/Article/CJFDTOTAL-HNDX201909015.htm 乔彦松, 郭正堂, 郝青振, 等. 2006. 中新世黄土-古土壤序列的粒度特征及其对成因的指示意义[J]. 地球科学, 36 (7): 646-653. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200607004.htm 孙建中. 1980. 黄土成因问题的探讨[J]. 地质科学, (2): 194-200. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX198002010.htm 王铁行, 罗少锋, 刘小军. 2010. 考虑含水率影响的非饱和原状黄土冻融强度试验研究[J]. 岩土力学, 31 (8): 2378-2382. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201008005.htm 王运生, 李永昭, 向芳. 2003. 川西高原甘孜黄土的成因[J]. 地质力学学报, 9 (1): 91-96. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX200301012.htm 吴万贞, 刘峰贵, 陈琼, 等. 2009. 三江源地区土壤侵蚀类型研究[J]. 地球科学与环境学报, 31 (4): 423-426. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX200904016.htm 叶万军, 杨更社, 彭建兵, 等. 2012. 冻融循环导致洛川黄土边坡剥落病害产生机制的试验研究[J]. 岩石力学与工程学报, 31 (1): 199-205. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201201025.htm 张杰, 李萍, 李同录, 等. 2021. 黄土沉积过程及微结构模型的非连续变形分析[J]. 工程地质学报, 29 (4): 1199-1206. doi: 10.13544/j.cnki.jeg.2019-517 张蓉蓉, 樊会敏, 郭军艳, 等. 2018. 陕西渭北农田土壤盐碱化空间分布及影响因素[J]. 西北农业学报, 27 (3): 440-450. https://www.cnki.com.cn/Article/CJFDTOTAL-XBNX201803021.htm 赵文, 汪小静, 徐正宣, 等. 2021. 季节性冻土区粗颗粒土边坡自然演化特征试验研究[J]. 工程地质学报, 29 (5): 1497-1506. doi: 10.13544/j.cnki.jeg.2020-174 周燕国, 陈云敏, 柯瀚. 2005. 砂土液化势剪切波速简化判别法的改进[J]. 岩石力学与工程学报, 24 (13): 2369-2375. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200513027.htm -