离石黄土地层崩塌隐患体的地震波速特征

刘晓云 李彦荣 莫平 马天宇

刘晓云, 李彦荣, 莫平, 等. 2023. 离石黄土地层崩塌隐患体的地震波速特征[J]. 工程地质学报, 31(5): 1648-1654. doi: 10.13544/j.cnki.jeg.2021-0187
引用本文: 刘晓云, 李彦荣, 莫平, 等. 2023. 离石黄土地层崩塌隐患体的地震波速特征[J]. 工程地质学报, 31(5): 1648-1654. doi: 10.13544/j.cnki.jeg.2021-0187
Liu Xiaoyun, Li Yanrong, Mo Ping, et al. 2023. Characteristics of seismic wave velocity of potential slope failure in Lishi loess strata[J]. Journal of Engineering Geology, 31(5): 1648-1654. doi: 10.13544/j.cnki.jeg.2021-0187
Citation: Liu Xiaoyun, Li Yanrong, Mo Ping, et al. 2023. Characteristics of seismic wave velocity of potential slope failure in Lishi loess strata[J]. Journal of Engineering Geology, 31(5): 1648-1654. doi: 10.13544/j.cnki.jeg.2021-0187

离石黄土地层崩塌隐患体的地震波速特征

doi: 10.13544/j.cnki.jeg.2021-0187
基金项目: 

国家自然科学基金 41877276

详细信息
    作者简介:

    刘晓云(1993-), 男, 硕士生, 主要从事地质灾害研究工作. E-mail:1284621830@qq.com

    通讯作者:

    李彦荣(1978-), 男, 博士, 教授, 博士生导师, 主要从事黄土地质工程研究工作. E-mail:li.dennis@hotmail.com

  • 中图分类号: P642.23

CHARACTERISTICS OF SEISMIC WAVE VELOCITY OF POTENTIAL SLOPE FAILURE IN LISHI LOESS STRATA

Funds: 

the National Natural Science Foundation of China 41877276

  • 摘要: 崩塌是黄土高原地区最常见、致灾最为严重的地质灾害之一。本文通过野外钻探,采用原位地震波测试的方法,详细分析了离石黄土崩塌隐患体内部的波速结构特征。结果发现,在竖直方向上,地震波速整体随深度增加而增大;水平方向上,地震波速自边坡坡面向坡体内部逐渐增大。结合数值模拟,发现崩塌隐患体由于受到卸荷回弹作用的影响,产生了指向坡外的形变。形变增量的大小与距离边坡坡面的远近有关,距离坡面越近形变增量越大,致使对应土体的密实度减小。密实度的减小是隐患体内部波速存在差异的重要原因。研究表明,利用地震波速的变化规律可以宏观反映崩塌隐患体内部结构特征,进而指导黄土崩塌地质灾害的防治研究。
  • 图  1  试验场地概况

    a. 试验场地周边地形地貌;b. 试验场地地质剖面

    Figure  1.  Overview of the test site:(a)Landform; and (b)Geological profile of the test site

    图  2  地震波速测试布置方案

    a. 平面布置图;b. 三维布置图

    Figure  2.  Test layout for seismic wave velocity measurement:(a) The plane layout; and (b)3D view

    图  3  不同深度激发点波形初至时间拾取(以图 2b中的I#检波点为例)

    Figure  3.  First arrival time of excitation points at different depths(Point I in Fig. 2b as an example)

    图  4  不同地形边界关键检波点的时距曲线(a)和分层波速(b)

    Figure  4.  Difference in time-distance curves(a) and wave velocity in different directions(b)

    图  5  5不同深度地层波速的各向异性:

    (a). 1 m;(b). 10 m and (c). 20 m a.1 m;b.10 m;c.20 m

    Figure  5.  Anisotropy of wave velocity at different depths:

    图  6  不同深度地层波速等值线分布图

    Figure  6.  Contour of wave velocity at different depths

    图  7  坡顶浅表土体天然密度与边坡距的关系

    Figure  7.  Relationship between natural density of shallow soil and the distance to slope surface

    图  8  黄土崩塌隐患体崩塌卸荷变形分析

    a. 水平位移增量等值线;b. 水平位移增量迹线

    Figure  8.  Deformation of loess slope due to horizontal unloading: (a)Contour map of horizontal displacement increment and(b)Vector graph of horizontal displacement increment

    图  9  3个不同深度(1 m、10 m、20 m)剖面线位置处水平位移增量的变化趋势

    Figure  9.  Variation of horizontal displacement increment along profiles at different depths

    表  1  模型边坡基础物理参数

    Table  1.   Physical parameters of Lishi loess in the test site

    类型 弹性模量E/N·m-2 黏聚力c/kPa 内摩擦角φ/(°) 泊松比ν 重度γ/kN·m-3
    天然重度 饱和重度
    莫尔-库仑模型 2×104 8 29 0.33 17 19
    下载: 导出CSV
  • Cai Y Q, Li B Q, Xu C J. 2010. Characteristics of retaining structures of deep foundation pits under different excavation depths[J]. Chinese Journal of Geotechnical Engineering, 32 (S1): 28-31.
    Chen Y M, Wang L M, Liu H M. 2003. Prediction method of seismic subsidence of loess ground with shear wave velocity[J]. Chinese Journal of Rock Mechanics and Engineering, 22 (S2): 2834-2839.
    Feng L C, Zheng Y W. 1982. Collapsible loess in China[M]. Beijing: China Railway Publishing House.
    Fu X J, Lin Z Z. 2010. Elastoplastic finite element numerical calculation and analysis of ultra-deep foundation pit excavation based on PLAXIS[J]. China Water Transport, 10 (4): 190-192. doi: 10.3969/j.issn.1006-7973-C.2010.04.097
    Hou Y L. 2007. Research on correlation between shear wave volecity and engineering properties of soil in Xi'an area loess[D]. Xi'an: Chang'an University.
    Jiang H B, Lü Y Q, Zhu J. 2010. Deformation analysis of loess high slope in Shuiliandong coal mine industrial site[J]. Coal Engineering, (11): 42-45. doi: 10.3969/j.issn.1671-0959.2010.11.018
    Jin M. 2006. Application of vertical and horizontal wave velocities in determining collapsibility of loess[J]. West China Exploration Engineering, (1): 20-21.
    Li Y R, Shi W H, Aydin A, et al. 2020. Loess genesis and worldwide distribution[J]. Earth-Science Reviews, 201: 102947. doi: 10.1016/j.earscirev.2019.102947
    Liu C Z. 2019. Analysis methods on the risk identification of landslide disasters[J]. Journal of Engineering Geology, 27 (1): 88-97.
    Liu H J, Zhou T H. 2001. Study on the collapsibility of Q2 loess from several engineering practices[R]. Lanzhou: China Engineering Construction Standardization Association.
    Liu X Y. 2019. Failure modes and early identiffcation of typical loess collapse in Shanxi[J]. Journal of Yangtze River Scientific Research Institute, 36 (11): 69-75. doi: 10.11988/ckyyb.20181280
    Liu X, Wang L M, Bai Y M. 2004. Experimental study on loess reinforced cohesion by elastic wave velocity[J]. Northwestern Seismological Journal, 26 (3): 218-222.
    Ni J, Li S S, Han Y Q, et al. 2019. Experimental study on creep behavior of saturated soft clays under loading and unloading conditions[J]. Journal of Engineering Geology, 27 (6): 1262-1269.
    Qu Y X, Zhang Y S, Chen Q L. 2001. Preliminary study on loess slumping in the area between northern Shaanxi and western Shanxi-Taking the pipeline for transporting GAS from west to east in China[J]. Journal of Engineering Geology, 9 (3): 233-240. doi: 10.3969/j.issn.1004-9665.2001.03.002
    Wang G L, Zhang M S, Su T M, et al. 2011. Collapse failure modes and dem numerical simulation for loess slopes[J]. Journal of Engineering Geology, 19 (4): 541-549. doi: 10.3969/j.issn.1004-9665.2011.04.015
    Wang L M, Yuan Z X, Wang J, et al. 2000. Laboratory study of effect of dry density on seismic settlement of compacted loess[J]. Earthquake Engineering and Engineering Vibration, 20 (1): 75-80.
    Wang P, Wang L M, Wang Q, et al. 2012. Study on critical shear wave velocity of saturated loess foundation soil liquefaction under different seismic magnitudes action[J]. Advanced Materials Research, 594/597 : 1720-1726. doi: 10.4028/www.scientific.net/AMR.594-597.1720
    Wang Q. 2011. Study on loess liquefaction evaluation based on physical indexes and depth limit[D]. Lanzhou: Lanzhou Institute of Seismology, China Earthquake Administration.
    Wang Z H. 2007. Testing study on relationship among P-Wave Velocity and Physico-Mechanical in Xiashu loess[D]. Nanjing: Hohai University.
    Ye W J, Wang P, Yang G S, et al. 2013. Formation factors of loess collapse and method for determining its influence range[J]. Journal of Engineering Geology, 21 (6): 920-925. doi: 10.3969/j.issn.1004-9665.2013.06.021
    Ye W J, Yang G S, Chang Z H, et al. 2011. Characteristics of development state of spalling hazard in loess slope and its evaluation method[J]. Journal of Engineering Geology, 19 (1): 37-42.
    Yuan S F. 2007. Discussion on determining the lithology of loess strata by using the conclusion of wave velocity measurement[J]. Geological Hazards and Environmental Protection, 126-129.
    Yuan W F. 1998. Application and research of wave velocity measurement in engineering[J]. Inland Earthquake, 12 (1): 50-57.
    蔡袁强, 李碧青, 徐长节. 2010. 挖深不同情况下基坑支护结构性状研究[J]. 岩土工程学报, 32 (S1): 28-31. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2010S1007.htm
    陈永明, 王兰民, 刘红玫. 2003. 剪切波速预测黄土场地震陷量的方法[J]. 岩石力学与工程学报, 22(增2): 2834-2839. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2003S2061.htm
    冯连昌, 郑晏武. 1982. 中国湿陷性黄土[M]. 北京: 中国铁道出版社.
    付先进, 林作忠. 2010. 基于PLAXIS的超深基坑开挖弹塑性有限元数值计算与分析[J]. 中国水运, 10 (4): 190-192. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSUX201004102.htm
    侯云亮. 2007. 西安地区黄土地基剪切波速与工程特性相关性的研究[D]. 西安: 长安大学.
    姜海波, 吕远强, 祝建. 2010. 水帘洞煤矿工业场地黄土高边坡变形分析[J]. 煤炭工程, (11): 42-45. https://www.cnki.com.cn/Article/CJFDTOTAL-MKSJ201011018.htm
    金敏. 2006. 纵横波速在判定黄土湿陷性方面的应用[J]. 西部探矿工程, (1): 20-21. https://www.cnki.com.cn/Article/CJFDTOTAL-XBTK200601009.htm
    刘传正. 2019. 崩塌滑坡灾害风险识别方法初步研究[J]. 工程地质学报, 27 (1): 88-97. doi: 10.13544/j.cnki.jeg.2019-009
    刘旭, 王兰民, 白耀明. 2004. 弹性波速反映黄土加固凝聚力变化的试验研究[J]. 西北地震学报, 26 (3): 218-222. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ200403018.htm
    刘厚健, 周天红. 2001. 从多个工程实践看Q2黄土的湿陷性[R]. 兰州: 中国工程建设标准化协会.
    刘向御. 2019. 山西典型黄土崩塌破坏模式及其早期辨识[J]. 长江科学院院报, 36 (11): 69-75. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201911017.htm
    倪静, 李杉杉, 韩玉琪, 等. 2019. 加卸荷条件下饱和软黏土蠕变特性试验研究[J]. 工程地质学报, 27 (6): 1262-1269. doi: 10.13544/j.cnki.jeg.2017-625
    曲永新, 张永双, 陈情来. 2001. 陕北晋西黄土滑塌灾害的初步研究——以西气东输工程为例[J]. 工程地质学报, 9 (3): 233-240. http://www.gcdz.org/article/id/9375
    王谦. 2011. 饱和黄土液化势的物性指标评价和深度下限研究[D]. 兰州: 中国地震局兰州地震研究所.
    王根龙, 张茂省, 苏天明, 等. 2011. 黄土崩塌破坏模式及离散元数值模拟分析[J]. 工程地质学报, 19 (4): 541-549. http://www.gcdz.org/article/id/10052
    王兰民, 袁中夏, 王峻, 等. 2000. 干密度对击实黄土震陷性影响的试验研究[J]. 地震工程与工程振动, 20 (1): 75-80. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC200001011.htm
    王峥辉. 2007. 下蜀黄土超声波波速与物理力学性质试验研究[D]. 南京: 河海大学.
    叶万军, 王鹏, 杨更社, 等. 2013. 黄土崩塌的形成因素及其影响范围的确定方法[J]. 工程地质学报, 21 (6): 920-925. http://www.gcdz.org/article/id/11366
    叶万军, 杨更社, 常中华, 等. 2011. 黄土边坡剥落病害的发育特征及其发育程度评价[J]. 工程地质学报, 19 (1): 37-42. http://www.gcdz.org/article/id/8788
    袁素凤. 2007. 运用波速测定结论确定黄土地层岩性探讨[J]. 地质灾害与环境保护: 126-129.
    袁文福. 1998. 波速测试在工程中的应用与研究[J]. 内陆地震, 12 (1): 50-57. https://www.cnki.com.cn/Article/CJFDTOTAL-LLDZ199801007.htm
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  57
  • HTML全文浏览量:  8
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-07
  • 修回日期:  2021-07-20
  • 刊出日期:  2023-10-25

目录

    /

    返回文章
    返回