干湿循环作用下红砂岩崩解的影响因素研究

高文华 许黎 张宗堂 肖天祥 谢宝香

高文华, 许黎, 张宗堂, 等. 2023. 干湿循环作用下红砂岩崩解的影响因素研究[J]. 工程地质学报, 31(5): 1597-1604. doi: 10.13544/j.cnki.jeg.2021-0198
引用本文: 高文华, 许黎, 张宗堂, 等. 2023. 干湿循环作用下红砂岩崩解的影响因素研究[J]. 工程地质学报, 31(5): 1597-1604. doi: 10.13544/j.cnki.jeg.2021-0198
Gao Wenhua, Xu Li, Zhang Zongtang, et al. 2023. Research on influencing factors of red sandstone disintegration during drying-wetting cycles[J]. Journal of Engineering Geology, 31(5): 1597-1604. doi: 10.13544/j.cnki.jeg.2021-0198
Citation: Gao Wenhua, Xu Li, Zhang Zongtang, et al. 2023. Research on influencing factors of red sandstone disintegration during drying-wetting cycles[J]. Journal of Engineering Geology, 31(5): 1597-1604. doi: 10.13544/j.cnki.jeg.2021-0198

干湿循环作用下红砂岩崩解的影响因素研究

doi: 10.13544/j.cnki.jeg.2021-0198
基金项目: 

国家自然科学基金项目 52208341

湖南省自然科学基金项目 2020JJ4019

湖南省自然科学基金项目 2023JJ40293

湖南省科技人才托举工程项目——“小荷”科技人才专项 2023TJ-X74

浙江省交通科技项目 2020004

详细信息
    作者简介:

    高文华(1962-),男,博士,教授,博士生导师,主要从事岩土工程和地下结构工程的研究. E-mail: wenhuagao@163.com

    通讯作者:

    张宗堂(1991-),男,博士,讲师,主要从事岩土工程方面的研究. E-mail: zzt@hnust.edu.cn

  • 中图分类号: TU458

RESEARCH ON INFLUENCING FACTORS OF RED SANDSTONE DIS-INTEGRATION DURING DRYING-WETTING CYCLES

Funds: 

the National Natural Science Foundation of China 52208341

the Natural Science Foundation of Hunan Province 2020JJ4019

the Natural Science Foundation of Hunan Province 2023JJ40293

Xiaohe Sci-Tech Talents Special Funding under Hunan Provincial Sci-Tech Talents Sponsorship Program 2023TJ-X74

the Transportation Technology Foundation of Zhejiang Province 2020004

  • 摘要: 红砂岩广泛分布于我国南方地区,因强度低、胶结程度差,且含有一定的膨胀性黏土矿物,此类岩石受水影响易发生崩解,从而易诱发多种地质灾害。选取湖南株洲地区的微膨胀红砂岩进行静态与扰动崩解试验,采用耐崩解性指数、标准基础熵、崩解比和分形维数等作为评价红砂岩崩解特性指标,探讨了烘干温度、试块质量、外界扰动和干湿循环作用等因素对红砂岩崩解特性的影响。研究结果表明,静态崩解方式下,相比于105 ℃和30 ℃,60 ℃的烘干温度更利于岩样崩解。而扰动崩解下,烘干温度对红砂岩崩解的影响几乎可以忽略不计。在烘干温度、试块质量等因素不变的情况下,外界扰动对红砂岩崩解特性存在显著影响。试块质量对红砂岩崩解特性存在一定的影响,试块质量越大,红砂岩崩解速率越快。干湿循环作用对红砂岩崩解的影响十分显著,随着循环次数增加,红砂岩的崩解破碎程度逐渐加大。
  • 图  1  HNB-1岩石耐崩解试验仪

    Figure  1.  Slake durability apparatus

    图  2  静态崩解的IdN-N曲线

    Figure  2.  Curves of IdN-N in static disintegration

    图  3  静态崩解的D-N曲线

    Figure  3.  Curves of D-N in static disintegration

    图  4  静态崩解的Sb-N曲线

    Figure  4.  Curves of Sb-N in static disintegration

    图  5  静态崩解的IRdN-N曲线

    Figure  5.  Curves of IRdN-N in static disintegration

    图  6  扰动崩解的IdN-N曲线

    Figure  6.  Curves of IdN-N in disturbed disintegration

    图  7  扰动崩解的D-N曲线

    Figure  7.  Curves of D-N in disturbed disintegration

    图  8  扰动崩解的Sb-N曲线

    Figure  8.  Curves of Sb-N in disturbed disintegration

    图  9  扰动崩解的IRdN-N曲线

    Figure  9.  Curves of IRdN-N in disturbed disintegration

    图  10  静态与扰动崩解的IdN-N对比图

    Figure  10.  Comparison of IdN-N in static and disturbed disintegration

    图  11  静态与扰动崩解的D-N对比

    Figure  11.  Comparison of D-N in static and disturbed disintegration

    图  12  静态与扰动崩解的Sb-N对比

    Figure  12.  Comparison of Sb-N in static and disturbed disintegration

    图  13  静态与扰动崩解的IRdN-N对比图

    Figure  13.  Comparison of IRdN-N in static and disturbed disintegration

    图  14  不同试块质量的IdN-N曲线

    Figure  14.  Curves of IdN-N of different test block mass

    图  15  不同试块质量的D-N曲线

    Figure  15.  Curves of D-N of different test block mass

    图  16  不同试块质量的Sb-N曲线

    Figure  16.  Curves of Sb-N of different test block mass

    图  17  不同试块质量的IRdN-N曲线

    Figure  17.  Curves of IRdN-N of different test block mass

    表  1  红砂岩矿物成分

    Table  1.   Mineral composition of red sandstone

    矿物名称 百分含量/% 矿物名称 百分含量/%
    石英 40.85 绿泥石 5.24
    方解石 20.47 伊利石 2.52
    长石 12.84 绿脱石 1.16
    云母 8.41 蒙脱石 0.81
    高岭石 6.96 其他 0.74
    下载: 导出CSV

    表  2  各试样的试验设计参数

    Table  2.   Test design parameters of each sample

    崩解方法 烘干温度/℃ 试块质量范围/g 平均质量/g 循环次数N/次 试样编号
    静态浸水崩解 105 40~60 51.14 1~20 TW01
    60 40~60 51.87 1~20 TW02
    30 40~60 51.08 1~20 TW03
    外界扰动崩解 105 40~60 53.32 1~20 TY01
    60 40~60 47.76 1~20 TY02
    30 40~60 51.09 1~20 TY03
    静态浸水崩解 105 24~38 33.27 1~20 TZ01
    105 62~83 70.30 1~20 TZ02
    105 146~153 150.29 1~20 TZ03
    105 297~327 311.98 1~20 TZ04
    105 467~478 472.59 1~20 TZ05
    105 589~633 611.00 1~20 TZ06
    下载: 导出CSV
  • Cheng X G, He Z Y, Liu M N, et al. 2020. Study on engineering geological characteristics and unfavorable geology subarea of Huaibei Paleogene red-bed[J]. Journal of Engineering Geology, 2020-12-30, https://doi.org/10.13544/j.cnki.jeg.2020-273.
    Deng T, Huang M, Zhan J W. 2014. Fractal evolution law of clay rock disintegration under different pH conditions[J]. Journal of Tongji University(Natural Science), 42 (10): 1480-1485.
    Erguler Z A, Shakoor A. 2009. Relative contribution of various climatic processes in disintegration of clay-bearing rocks[J]. Engineering Geology, 108(1-2): 36-42. doi: 10.1016/j.enggeo.2009.06.002
    Fu H Y, Liu J, Zeng L, et al. 2019. Disintegration characteristics of carbonaceous mudstone under loading and wet-dry cycles[J]. China Journal of Highway and Transort, 32 (9): 22-31.
    Gamble J. 1971. Durability-plasticity classification of shales and other argillaceous rock[D]. Urbana: University of Illinois.
    LÖrincz J. 1986. Grading entropy of soils[D]. Budapest: University of Budapest.
    Liang B, Cao Q, Wang J G, et al. 2017. Experimental study on slaking characteristics of feeble disintegration soft rock in drying-wetting cycle[J]. China Safety Science Journal, 27 (8): 91-96.
    Liu X M, Yan S, Liu K, et al. 2020. Experimental study on strength properties of red bed weak rock filler under dry-wet cycles[J]. Journal of Highway and Transportation Research and Development, 37 (3): 24-30.
    Phienwej N. 1987. Ground response and support performance in a sheared shale, Stillwater Tunnel[D]. Urbana: University of Illinois.
    The Professional Standards Compilation Group of the People's Republic of China. 2015. Regulation for testing the physical and mechanical properties of rock(DZ/T 0276-2015)[S]. Beijing: Ministry of Nature Resources of the People's Republic of China.
    Xie X S, Chen H S, Xiao X H, et al. 2019. Micro-structural characteristics and softening mechanism of red-bed soft rock under water-rock interaction condition[J]. Journal of Engineering Geology, 27 (5): 966-972.
    Yan L B, Liu P, Peng H, et al. 2019. Laboratory study of the effect of temperature difference on the disintegration of red bed soft rock[J]. Physical Geography, 40 (2): 149-163. doi: 10.1080/02723646.2018.1559418
    Zeng L, Luo J T, Hou P, et al. 2019. Crack development and strength characteristics of pre-disintegrated carbonaceous mudstone under wet-dry cycles[J]. China Journal of Highway and Transport, 32 (9): 22-31.
    Zeng Z X, Kong L W, Tian H, et al. 2017. Effect of drying and wetting cycles on disintegration behavior of swelling mudstone and its grading entropy characterization[J]. Rock and Soil Mechanics, 38 (7): 1983-1989.
    Zhou C Y, Liang N, Liu Z. 2020. Multifractal characteristics of pore structure of red beds soft rock at different saturations[J]. Journal of Engineering Geology, 28 (1): 1-9.
    Zhao T, Wang L, Su H M, et al. 2021. Nonlinear viscoelastic damage constitutive of red sandstone under impact load[J]. Journal of Engineering Geology, 29 (2): 545-553.
    Zhao X Y, Li K P, Xiao D. 2020. Slaking characteristics of silty mudstone under acid rain action based on fractal dimension[J]. Journal of Engineering Geology, 28 (2): 232-239.
    Zhang J R, Hu Y, Zhang B W, et al. 2015. Fractal behavior of particle-size distribution during particle crushing of quartz sand and gravel[J]. Chinese Journal of Geotechnical Engineering, 37 (5): 784-791.
    Zhang S, Xu Q, Hu Z M. 2016. Effects of rainwater softening on red mudstone of deep-seated landslide, Southwest China[J]. Engineering Geology, 204 : 1-13. doi: 10.1016/j.enggeo.2016.01.013
    Zhang Z T. 2018. Experimental study on disintegration characteristic of swelling rock subjected to the dry and wet cycle[D]. Xiangtan: Hunan University of Science and Technology.
    Zhang Z T, Gao W H, Zhang Z M, et al. 2019a. Disintegration characteristics and fractal features of swelling rock during dry-wet cycles[J]. Journal of Railway Science and Engineering, 16 (4): 930-937.
    Zhang Z T, Gao W H, Tang X Y, et al. 2019b. Characteristics of grading entropy of disintegration of swelling rock under dry-wet cycles[J]. Journal of Water Resources & Water Engineering, 30 (6): 218-224.
    Zhang Z T, Gao W H, Zhang Z M, et al. 2020. Evolution of particle disintegration of red sandstone using Weibull distribution[J]. Rock and Soil Mechanics, 41 (3): 877-885.
    Zhang Z T, Gao W H. 2020. Effect of different test methods on the disintegration behaviour of soft rock and the evolution model of disintegration breakage under cyclic wetting and drying[J]. Engineering Geology, 279.
    程香港, 何昭宇, 刘梦楠, 等. 2020. 淮北古近系"红层"工程地质特性及不良地质分区研究[J]. 工程地质学报, 2020-12-30, https://doi.org/10.13544/j.cnki.jeg.2020-273.
    邓涛, 黄明, 詹金武. 2014. 不同pH环境下黏土类岩崩解过程分形演化规律[J]. 同济大学学报(自然科学版), 42 (10): 1480-1485. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201410003.htm
    付宏渊, 刘杰, 曾铃, 等. 2019. 考虑荷载及干湿循环作用的炭质泥岩崩解特征试验[J]. 中国公路学报, 32 (9): 22-31. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201909003.htm
    梁冰, 曹强, 王俊光, 等. 2017. 弱崩解性软岩干-湿循环条件下崩解特性试验研究[J]. 中国安全科学学报, 27 (8): 91-96. https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201708016.htm
    刘晓明, 颜圣, 刘凯, 等. 2020. 干湿循环作用下红层软岩填料强度特性试验研究[J]. 公路交通科技, 37 (3): 24-30. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK202003004.htm
    谢小帅, 陈华松, 肖欣宏, 等. 2019. 水岩耦合下的红层软岩微观结构特征与软化机制研究[J]. 工程地质学报, 27 (5): 966-972. doi: 10.13544/j.cnki.jeg.2019028
    曾铃, 罗锦涛, 侯鹏, 等. 2020. 干湿循环作用下预崩解炭质泥岩裂隙发育规律及强度特性[J]. 中国公路学报, 33 (9): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202009002.htm
    曾志雄, 孔令伟, 田海, 等. 2017. 膨胀岩崩解特性的干湿循环效应与粒度熵表征[J]. 岩土力学, 38 (7): 1983-1989. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201707018.htm
    周翠英, 梁宁, 刘镇. 2020. 红层软岩遇水作用的孔隙结构多重分形特征[J]. 工程地质学报, 28 (1): 1-9. doi: 10.13544/j.cnki.jeg.2018-337
    赵涛, 王磊, 苏宏明, 等. 2021. 冲击荷载下红砂岩非线性黏弹性损伤本构研究[J]. 工程地质学报, 29 (2): 545-553. doi: 10.13544/j.cnki.jeg.2020-182
    赵晓彦, 李昆鹏, 肖典, 等. 2020. 基于分形理论的粉砂质泥岩酸雨崩解特征研究[J]. 工程地质学报, 28 (2): 232-239. doi: 10.13544/j.cnki.jeg.2019-368
    张季如, 胡泳, 张弼文, 等. 2015. 石英砂砾破碎过程中粒径分布的分形行为研究[J]. 岩土工程学报, 37 (5): 784-791. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201505004.htm
    张宗堂. 2018. 干湿循环作用下膨胀岩的崩解特性试验研究[D]. 湘潭: 湖南科技大学.
    张宗堂, 高文华, 张志敏, 等. 2019a. 干湿循环作用下膨胀岩的崩解特性及分形特征[J]. 铁道科学与工程学报, 16 (4): 930-937. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201904013.htm
    张宗堂, 高文华, 唐骁宇, 等. 2019b. 干湿循环作用下膨胀岩崩解的粒度熵特征[J]. 水资源与水工程学报, 30 (6): 218-224. https://www.cnki.com.cn/Article/CJFDTOTAL-XBSZ201906033.htm
    张宗堂, 高文华, 张志敏, 等. 2020. 基于Weibull分布的红砂岩颗粒崩解破碎演化规律[J]. 岩土力学, 41 (3): 877-885. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202003018.htm
    中华人民共和国行业标准编写组. 2015. 岩石物理力学性质试验规程(DZ/T 0276-2015)[S]. 北京: 中华人民共和国国土资源部.
  • 加载中
图(17) / 表(2)
计量
  • 文章访问数:  71
  • HTML全文浏览量:  8
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-08
  • 修回日期:  2021-07-03
  • 刊出日期:  2023-10-25

目录

    /

    返回文章
    返回