CLUSTER ANALYSIS FOR JOINT DATA OF THREE-DIMENSIONAL ROCK MASS USING DifFUZZY METHOD
-
摘要: 模糊聚类法常常用来分析三维数据组,例如节理产状等,同时,其他方法也被用于分析目标数据的组分,但传统方法在分析复杂数据时通常会遇到困难。本文基于Ornella Cominetti和Anastasios Matzavinos近年提出的一种可用于复杂数据分析的新方法,将其引入并编程实现了DifFUZZY聚类法分析岩体结构面的产状参数。研究成果表明:(1)DifFUZZY聚类法是一种简单且功能强大的新方法,它可以自动分组目标数据形成聚类,且能获得优势产状,为三维真实结构面网络模拟实现提供了新途径;(2)DifFUZZY聚类法不需要高等的结构面产状信息,而是随机选择初始数据进行优势分组后基于自身算法确定分类,并最终给出优势结构面参数,为岩石边坡等区域稳定性快速分析提供可能;(3)基于DifFUZZY聚类法可循环作用寻找聚类编号,并根据数据类型原则自动确定数据点的聚类。Abstract: Fuzzy clustering techniques are often used in the study of three-dimensional data sets,such as orientation data. Other methods are used in finding groups within directional data. But traditional methods usually meet difficulties when dealing with some complicated data sets. In this paper,a new DifFUZZY clustering method proposed by Ornella Cominetti and Anastasios Matzavinos for the complex data sets,is firstly applied to cluster the orientation data. The results show the follows. (1)DifFUZZY is a new simple and powerful method to realize the 3D-simulation of joint sets,which can automatically separate directional data into distinct clusters and get the dominated value of orientation data. (2)DifFUZZY does not require any advanced information about the orientation data,and it just randomly selects the initial values as the dominated orientation and then according to its own algorithm finally decide which points belong to a cluster and the finally dominated orientation values of the clusters. The suggested method makes it possible to analyse the local stability of rock slope quickly. (3)DifFUZZY can self-acting return the cluster number and on the principle of the membership value it can automatically decide the point lies in which cluster or not.
-
Key words:
- Engineering Geology /
- Scientific problem /
- Landslide
-
表 1 FCM和DifFUZZY计算结果表
Table 1. Calculation results by FCM and DifFUZZY
分组编号 实例数据/(°) FCM法/(°) DifFUZZY法/(°) 1(*) 30/30
(k=40,N=100)32.35/32.66
(N′=102)31.87/31.57
(N′=100)2(+) 140/45
(k=10,N=60)137.73/47.64
(N′=63)138.54/47.28
(N′=61)3(o) 230/60
(k=15,N=30)233.70/63.24
(N′=27)236.29/62.53
(N′=25)4(.) 310/75
(k=30,N=30)308.89/67.90
(N′=28)308.92/69.62
(N′=26)*FCM和DifFUZZY计算结果为结构面倾向和倾角 表 2 San Manual mine实例计算结果表
Table 2. Calculation results of San Manual mine
分组编号 原始分组/(°) FCM/(°) DifFUZZY/(°) 1(*) 250/76 250.7374/68 258.59/73.70 2(o) 350/73 245.10/75.87 346.72/76.60 3(+) 128/26 118.9759/53.8795 127.74/26.45 *FCM和DifFUZZY计算结果为结构面倾向和倾角 -
Cominetti O, Matzavinos A, Samarasinghe S, et al. 2010. DifFUZZY:a fuzzy clustering algorithm for complex datasets[J]. International Journal of Computational Intelligence in Bioinformatics and Systems Biology, 1 (4): 402-417. doi: 10.1504/IJCIBSB.2010.038222 Deng L C, Li X Z, Wu Y, et al. 2021. Study on water conductivity characteristics of different scale structure surfaces in Beishan site area[J]. Journal of Engineering Geology, 29 (1): 77-85. Gao X B, Li L H, Liao X H, et al. 2020. Numerical simulation analysis of stability of unstable rock mass with reverse engineering modeling method[J]. Journal of Engineering Geology, 28 (3): 557-564. Hammah R, Curran J H. 1998. Fuzzy cluster algorithm for the automatic identification of joint sets[J]. International Journal of Rock Mechanics and Mining Sciences, 35 (7): 889-905. doi: 10.1016/S0148-9062(98)00011-4 Kulatilake P H S W, Um J, Wang M Y, et al. 2003. Stochastic fracture geometry modeling in 3-D including validations for a part of Arrowhead East Tunnel, California, USA[J]. Engineering Geology, 70(1-2): 131-155. doi: 10.1016/S0013-7952(03)00087-5 Mahtab M A, Yegulabp T M. 1984. Similarity test for grouping orientation data in rock mechanics[C]//The 25th US Symposium on Rock Mechanics(USRMS). Alexandria: American Rock Mechanics Association: 495-502. Priest S. 1985. Hemispherical projection methods in rock mechanics[M]. London: George Allen & Unwin Ltd. Schmidt W. 1925. Gefugestatistik, Tschermaks Mineral[J]. Petrol Mitt, 38 : 392-423. Shanley R J, Mahtab M A. 1976. Delineation and analysis of clusters in orientation data[J]. Journal of the International Association for mathematical Geology, 1 : 9-23. Si C L, Zhao J, Liu Q, et al. 2015. Engineering classification and mechanical parameter analysis of structural surfaces[J]. Gansu Water Resources and Hydropower Technology, 51 (5): 36-39. Wang B, Tang H M, Jian W X, et al. 2006. Application of 3D network modeling rock mass discontinuities to evaluating rock mass quality for dam foundation[J]. Rock and Soil Mechanics, 27 (4): 594-596. Wu L X, Lü Q, Cai X H, et al. 2021. Anisotropy evaluation of rock joint roughness using rotation sampling method[J]. Journal of Engineering Geology, 29 (1): 52-58. Yu Q, Xue G, Chen J. 2007. Fractured rock mass block theory[M]. Beijing: China Water Power Press. Zhang W, Chen J P, Yuan X Q, et al. 2012. Study of size effect and spatial effect of RQD for rock masses based on three-dimensional fracture network[J]. Chinese Journal of Rock Mechanics and Engineering, 31 (7): 1437-1445. Zhang W, Han B, Sun H L, et al. 2020. Non-contact collection and 3D fracture network modelling for high-steep rock slopes[J]. Journal of Engineering Geology, 28 (2): 221-231. http://www.sciengine.com/doi/pdf/24A0540B5EE84CCEA12E694D7DF3F61C 邓龙传, 李晓昭, 吴云, 等. 2021. 北山场址区不同尺度结构面导水特性研究[J]. 工程地质学报, 29 (1): 77-85. doi: 10.13544/j.cnki.jeg.2020-623 高相波, 李丽慧, 廖小辉, 等. 2020. 基于逆向工程建模方法的危岩体稳定性数值模拟分析[J]. 工程地质学报, 28 (3): 557-564. doi: 10.13544/j.cnki.jeg.2019-252 司长亮, 赵俊, 刘强. 2015. 结构面工程分级及力学参数分析[J]. 甘肃水利水电技术, 51 (5): 36-39. 汪斌, 唐辉明, 简文星, 等. 2006. 结构面三维网络模拟在岩体质量评价中的应用[J]. 岩土力学, 27 (4): 594-596. 吴禄祥, 吕庆, 蔡学桁, 等. 2021. 基于旋转采样法的结构面粗糙度各向异性评价[J]. 工程地质学报, 29 (1): 52-58. doi: 10.13544/j.cnki.jeg.2020-091 张文, 陈剑平, 苑晓青, 等. 2012. 基于三维裂隙网络的RQD尺寸效应与空间效应的研究[J]. 岩石力学与工程学报, 31 (7): 1437-1445. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201207017.htm 张文, 韩博, 孙昊林, 等. 2020. 高陡岩质斜坡的结构面非接触式采集技术与三维裂隙网络模拟研究[J]. 工程地质学报, 28 (2): 221-231. doi: 10.13544/j.cnki.jeg.2020-080 -