厦门滨海区某地铁联络通道冻结法施工监测与温度场分析

陈凯文 戴自航 张浩 王耀

陈凯文, 戴自航, 张浩, 等. 2023. 厦门滨海区某地铁联络通道冻结法施工监测与温度场分析[J]. 工程地质学报, 31(5): 1748-1756. doi: 10.13544/j.cnki.jeg.2021-0206
引用本文: 陈凯文, 戴自航, 张浩, 等. 2023. 厦门滨海区某地铁联络通道冻结法施工监测与温度场分析[J]. 工程地质学报, 31(5): 1748-1756. doi: 10.13544/j.cnki.jeg.2021-0206
Chen Kaiwen, Dai Zihang, Zhang Hao, et al. 2023. Analysis of construction monitoring and temperature field of cross-passage of subway in seashore area in Xiamen using ground freezing method[J]. Journal of Engineering Geology, 31(5): 1748-1756. doi: 10.13544/j.cnki.jeg.2021-0206
Citation: Chen Kaiwen, Dai Zihang, Zhang Hao, et al. 2023. Analysis of construction monitoring and temperature field of cross-passage of subway in seashore area in Xiamen using ground freezing method[J]. Journal of Engineering Geology, 31(5): 1748-1756. doi: 10.13544/j.cnki.jeg.2021-0206

厦门滨海区某地铁联络通道冻结法施工监测与温度场分析

doi: 10.13544/j.cnki.jeg.2021-0206
基金项目: 

中国建筑第七工程局有限公司课题 CSCEC7b-2016-Z-2

详细信息
    作者简介:

    陈凯文(1996-),男,硕士生,主要从事地铁隧道科研工作. E-mail:526547858@qq.com

    通讯作者:

    戴自航(1966-),男,博士,教授,博士生导师,主要从事岩土工程方面的科研与教学工作. E-mail:dzhan@fzu.cn

  • 中图分类号: U455

ANALYSIS OF CONSTRUCTION MONITORING AND TEMPERATURE FIELD OF CROSS-PASSAGE OF SUBWAY IN SEASHORE AREA IN XIAMEN USING GROUND FREEZING METHOD

Funds: 

the China Construction No.7 Engineering Bureau Co., Ltd. CSCEC7b-2016-Z-2

  • 摘要: 区间联络通道现已成为双线隧道建设必不可少的一部分,具有排水、防火、连通两隧道以及在隧道发生事故时作为“逃生通道”的作用。为准确掌握厦门滨海区隧道联络通道冻结法施工过程中温度场的发展规律,开展了厦门地铁六号线马集区间段2#联络通道冻结法施工全程监测与分析,并采用Diana有限元程序建立与放射状布置冻结孔完全相同三维数值模型分析了冻结施工过程中温度场随时间的变化规律,将数值分析结果与代表性点实测数据进行了对比。结果表明:各测点温度的变化趋势大体一致,测位点越深冻结效果越好;泄压孔压力初始时大小差异主要是由孔点所处的固有土压不同所致;距冻结管越近土体温度降速越快,冻结土强度越高,形成冻结壁后冻结效率相应提高;数值分析所得温度场是非对称的;该数值模拟方法具有便捷性、较好的可行性和较高的可靠性,可作为今后类似工程冻结施工温度场的预测方法。
  • 图  1  马集区间平面示意图

    Figure  1.  Schematic plan of Ma-ji section

    图  2  联络通道所在地层位置

    Figure  2.  Location of cross-passage in soil layers

    图  3  冻结管、测温管及泄压管管位布置纵剖面图

    Figure  3.  Layout profile of freezing pipes,temperature measuring pipes and pressure relief pipes

    图  4  冻结孔、测温孔及泄压孔孔位双侧横断面图

    Figure  4.  Cross-section layout of freezing holes,temperature measuring holes,and pressure relief holes

    图  5  测温孔测点布置(单位:mm)

    Figure  5.  Layout of measuring points in temperature measuring holes(unit: mm)

    图  6  盐水去回路温度及其温差随时间变化曲线

    Figure  6.  Curves of brine temperatures in go and return circuits and their differences varied with the time

    图  7  各泄压孔孔压-时间折线

    Figure  7.  Polyline curves of the pressure-time of all pressure relief holes

    图  8  C1、C2测温孔测点温度与时间关系

    Figure  8.  Temperature-time curves of the measuring points in holes C1 and C2

    图  9  C3测温孔测点温度与时间关系

    Figure  9.  Temperature-time curves of the measuring points in hole C3

    图  10  C6测温孔测点温度与时间关系

    Figure  10.  Temperature-time curves of the measuring points in hole C6

    图  11  C8测温孔测点温度与时间关系

    Figure  11.  Temperature-time curves of the measuring points in hole C8

    图  12  有限元模型及网格划分

    Figure  12.  Finite element model and meshes

    图  13  隧道与冻结管布置模型

    Figure  13.  Model of tunnels and layout of freezing pipes

    图  14  冻结温度随时间变化等值云图

    1a. 冻结12 d(Y=5 m);1b. 冻结12 d(X=3 m);2a. 冻结20 d(Y=5 m);2b. 冻结20 d(X=3 m);3a. 冻结36 d(Y=5 m);3b. 冻结36 d (X=3 m);4a. 冻结45 d(Y=5 m);4b. 冻结45 d(X=3 m)

    Figure  14.  Contours of freezing temperature vs. time

    图  15  两代表点处模拟与实测温度-时间曲线对比

    Figure  15.  Comparisons of the modeled and measured temperature-time curves for two typical points

    表  1  土体物理力学参数

    Table  1.   Physical and mechanical parameters of soils

    土层 杨氏模量/MPa 土体饱和密度/kg·m-3 黏聚力/kPa 内摩擦角/(°) 泊松比 含水率/% 孔隙比 热膨胀系数/℃-1 传导率/W·m-1·℃-1 比热容/J·m-3·℃-1
    1# 14 1810 25 14.6 0.29 31.9 0.96 -4×10-6 2.21 3.2×106
    下载: 导出CSV

    表  2  冻结管设计参数

    Table  2.   Design parameters of freezing pipes

    冻结孔 定位角度/(°) 打孔仰角/(°) 深度/m 孔数/个 总孔深/m 备注
    A1~A6 55 14.8 5.350 6 32.100
    A7~A13 39 7.7 9.284 7 64.988
    A14~A15 30.8 6.0 8.620 2 17.240
    D1~D2 26 4.6 8.071 2 16.142
    D3~D4 14.6 3.0 7.444 2 14.888
    D5~D6 6.5 0 7.536 2 15.072 透孔
    D7~D8 -6 -1.5 7.561 2 15.122 透孔
    D9~D10 -14 -4.5 7.522 2 15.044
    D11~D12 -22 -7.4 8.235 2 16.470
    D13~D14 -30 -10.8 10.354 2 20.708
    D15~D16 -38 -15.2 9.942 2 19.884
    D17~D18 -46 -20.7 9.612 2 19.224
    D19~D20 -54 -26.6 9.296 2 18.592
    D21~D22 -63 -32.2 9.130 2 18.260
    D23~D24 -71 -38.3 9.090 2 18.180
    M1~M9 -79 -43.7 9.211 9 82.899
    M10~M15 -90 -51.4 6.457 6 38.742
    N1~N8 -79 -43.7 8.264 8 66.112
    N9~N15 -90 -51.4 6.457 7 45.199
    B1~B6 49.4 25.6 3.547 6 21.282
    合计 75 576.148
    下载: 导出CSV

    表  3  测温孔及泄压孔设计参数

    Table  3.   Parameters of temperature measuring holes and pressure relief holes

    孔类型 钻孔编号 定位角度/(°) 打孔仰角/(°) 打孔水平角/(°) 深度/m 孔数/个 总孔深/m
    测温孔 C1~C2 20 4 0 2.0 2 4.0
    C3~C5 31.5 -2.6 0 2.0 3 6.0
    C6~C9 -57.7 -38.6 0 5.0 4 20.0
    C10~C11 -35.1 0 0 2.0 2 4.0
    合计 11 34.0
    泄压孔 X1、X3 0 0 0 3.0 2 6.0
    X2、X4 -36 0 0 3.0 2 6.0
    合计 4 12.0
    下载: 导出CSV

    表  4  不同断面冻结情况

    Table  4.   Freezing state of different sections

    截面 喇叭口左处冻结帷幕 冻结管交叉区域 喇叭口右处冻结帷幕
    冻结壁有效厚度/mm 2008 2106 2030
    平均温度/℃ -13.596 -13.942 -13.637
    下载: 导出CSV
  • Afshani A,Akagi H. 2015. Artificial ground freezing application in shield tunneling[J]. Japanese Geotechnical Society Special Publication,3 (2): 71-75. doi: 10.3208/jgssp.v03.j01
    Cai H B, Li S, Liang Y, et al. 2019. Model test and numerical simulation of frost heave during twin-tunnel construction using artificial ground-freezing technique[J]. Computers and Geotechnics, 115(1): 103115.
    Cao H L. 2010. Thawing settlement control of subway tunnel construction by artificial ground freezing[J]. Chinese Journal of Underground Space and Engineering, 6 (2): 387-390, 395.
    Chen J F. 2019. Study on application technology of freezing method in cross-sea communication channel construction[C]//Zhongzhi Building Research Institute Co., Ltd. Proceedings of Civil Engineering New Materials, New Technology and Engineering Application Exchange Conference(Volume 2). Beijing: Industrial Construction Magazine: 5.
    Chen J H, Liu T Y, Zhang C C, et al. 2019. Analyzing development characteristics of freezing temperature field to ultra-long connected aisle[J]. Journal of Railway Science and Engineering, 16 (12): 3059-3067.
    Editorial Committee of "Well Construction Engineering Manual". 2003. Concise well construction manual[M]. Beijing: China Coal Industry Publishing House.
    Gao X J, Li M Y, Zhang J W, et al. 2021. Field research on artificial freezing of subway cross passage in water-rich silty clay layer[J]. Chinese Journal of Rock Mechanics and Engineering, 40 (6): 1267-1276.
    Hou Y F, Wang L, Wu Y K, et al. 2014. The concrete surfusion and its cause in freezing and thawing cycle[J]. Fly Ash Comprehensive Utilization, 27 (6): 15-17, 21. doi: 10.3969/j.issn.1005-8249.2014.06.004
    Hu J, Liu Y, Hong W, et al. 2017. Finite-Element analysis of heat transfer of horizontal ground-freezing method in shield-driven tunneling[J]. International Journal of Geomechanics, 17 (10): 1-11.
    Hu X D, Fang T, Chen J, et al. 2018. A large-scale physical model test on frozen status in freeze-sealing pipe roof method for tunnel construction[J]. Tunnelling and Underground Space Technology, 72 (1): 55-63.
    Hu X R, Rao Z Q, Wang R T. 2019. Numerical simulations for freezing method in connecting channel excavation of Nanchang subway[J]. Chinese Journal of Underground Space and Engineering, 15 (S1): 286-293.
    Li C Q, Ye W J, Hu S P, et al. 2020. Experimental study on thermophysical parameters of high water gravel formation for freezing construction[J]. Journal of Engineering Geology, 28 (3): 510-519.
    Li D Y, Wang H, Zhang Q H. 2003. Measures analysis of freezing method applied to connected aisle in Nanjing metro tunnel[J]. Rock and Soil Mechanics, 24 (S2): 365-368.
    Liu H, Wang Y, Wang H J, et al. 2022. Experimental study on frost heaving pressure evolution of rock ice cracks under freezing-thawing cycles[J]. Journal of Engineering Geology, 30(4): 1122-1131.
    Sun L Q, Ren Y X, Yan S W, et al. 2015. Numerical simulation method for thermal-stress coupling in artificial freezing process[J]. Chinese Journal of Geotechnical Engineering, 37 (S2): 137-142.
    Tang Y Q, Zhao W Q, Zhou J. 2020. Laboratory test study on moisture migration within mucky clay under unidirectional freezing in closed system[J]. Journal of Engineering Geology, 28 (5): 935-941.
    Wang X B, Yang P, Zhang T. 2008. Stuy on thaw settlement behavior of artificial freezing soil[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 32 (4): 108-112.
    Yang P, Chen J, Zhang S G, et al. 2017. Whole range monitoring for temperature and displacement fields of cross passage in soft soil by AGF[J]. Chinese Journal of Geotechnical Engineering, 39 (12): 2226-2234.
    Yang P, Ke J M, Wang J G, et al. 2006. Numerical simulation of frost heave with coupled water freezing, temperature and stress fields in tunnel excavation[J]. Computers and Geotechnics, 33 (6): 330-341.
    Yuan B Y, Zhao Y R, Zhu X F, et al. 2005. Construction monitoring and feedback analysis of a deep foundation pit with frozen ground and pile support[J]. Journal of Engineering Geology, 13 (4): 533-537.
    Zhang H Y. 2013. Experimental study on the frost heave characteristics of artificial freezing clay[D]. Huainan: Anhui University of Science and Technology.
    Zheng L F, Gao Y T, Zhou Y, et al. 2020. Research on surface frost heave and thaw settlement law and optimization of frozen wall thickness in shallow tunnel using freezing method[J]. Rock and Soil Mechanics, 41 (6): 2110-2121.
    曹红林. 2010. 地铁隧道冻结法施工融沉控制方案及实施[J]. 地下空间与工程学报, 6 (2): 387-390, 395. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201002033.htm
    陈建福. 2019. 跨海联络通道冻结施工设计技术研究[C]//中治建筑研究总院有限公司. 土木工程新材料、新技术及其工程应用交流会论文集(下册). 北京: 工业建筑杂志社: 5.
    陈军浩, 刘桐宇, 张潮潮, 等. 2019. 超长联络通道冻结温度场发展特性研究[J]. 铁道科学与工程学报, 16 (12): 3059-3067. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201912020.htm
    郜新军, 李铭远, 张景伟, 等. 2021. 富水粉质黏土中地铁联络通道冻结法试验研究[J]. 岩石力学与工程学报, 40 (6): 1267-1276. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202106017.htm
    侯云芬, 王玲, 吴越恺, 等. 2014. 冻融循环过程中混凝土的过冷现象及其原因分析[J]. 粉煤灰综合利用, 27 (6): 15-17, 21. https://www.cnki.com.cn/Article/CJFDTOTAL-FMLE201406004.htm
    胡小荣, 饶志强, 汪日堂. 2019. 南昌地铁联络通道冻结法模拟[J]. 地下空间与工程学报, 15(增刊1): 286-293. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE2019S1042.htm
    建井工程手册编委会. 2003. 简明建井工程手册[M]. 北京: 煤炭工业出版社.
    李大勇, 王晖, 张庆贺. 2003. 南京地铁联络通道冻结法施工措施分析[J]. 岩土力学, 24(增刊2): 365-368. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2003S2085.htm
    李长清, 叶万军, 胡双平, 等. 2020. 高富水卵砾石地层热物理参数试验研究[J]. 工程地质学报, 28 (3): 510-519. doi: 10.13544/j.cnki.jeg.2018-382
    刘昊, 王宇, 王华建, 等. 2022. 冻融循环作用下岩石含冰裂隙冻胀力演化试验研究[J]. 工程地质学报, 30(4): 1122-1131. doi: 10.13544/j.cnki.jeg.2020-204
    孙立强, 任宇晓, 闫澍旺, 等. 2015. 人工冻土冻结过程中热-力耦合的数值模拟方法研究[J]. 岩土工程学报, 37(增刊2): 137-142. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2015S2028.htm
    唐益群, 赵文强, 周洁. 2020. 封闭系统单向冻结淤泥质黏土水分迁移特性研究[J]. 工程地质学报, 28 (5): 935-941. doi: 10.13544/j.cnki.jeg.2020-268
    王效宾, 杨平, 张婷. 2008. 人工冻土融沉特性试验研究[J]. 南京林业大学学报(自然科学版), 32 (4): 108-112. https://www.cnki.com.cn/Article/CJFDTOTAL-NJLY200804028.htm
    杨平, 陈瑾, 张尚贵, 等. 2017. 软弱地层联络通道冻结法施工温度及位移场全程实测研究[J]. 岩土工程学报, 39 (12): 2226-2234. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201712013.htm
    袁宝远, 赵燕容, 朱旭芬, 等. 2005. 排桩冻结法深基坑施工监测与反馈分析[J]. 工程地质学报, 13 (4): 533-537. http://www.gcdz.org/article/id/9216
    张海银. 2013. 人工冻结黏土冻胀特性试验研究[D]. 淮南: 安徽理工大学.
    郑立夫, 高永涛, 周喻, 等. 2020. 浅埋隧道冻结法施工地表冻胀融沉规律及冻结壁厚度优化研究[J]. 岩土力学, 41 (6): 2110-2121. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202006036.htm
  • 加载中
图(15) / 表(4)
计量
  • 文章访问数:  36
  • HTML全文浏览量:  3
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-12
  • 修回日期:  2021-06-14
  • 刊出日期:  2023-10-25

目录

    /

    返回文章
    返回