ANALYSIS OF CONSTRUCTION MONITORING AND TEMPERATURE FIELD OF CROSS-PASSAGE OF SUBWAY IN SEASHORE AREA IN XIAMEN USING GROUND FREEZING METHOD
-
摘要: 区间联络通道现已成为双线隧道建设必不可少的一部分,具有排水、防火、连通两隧道以及在隧道发生事故时作为“逃生通道”的作用。为准确掌握厦门滨海区隧道联络通道冻结法施工过程中温度场的发展规律,开展了厦门地铁六号线马集区间段2#联络通道冻结法施工全程监测与分析,并采用Diana有限元程序建立与放射状布置冻结孔完全相同三维数值模型分析了冻结施工过程中温度场随时间的变化规律,将数值分析结果与代表性点实测数据进行了对比。结果表明:各测点温度的变化趋势大体一致,测位点越深冻结效果越好;泄压孔压力初始时大小差异主要是由孔点所处的固有土压不同所致;距冻结管越近土体温度降速越快,冻结土强度越高,形成冻结壁后冻结效率相应提高;数值分析所得温度场是非对称的;该数值模拟方法具有便捷性、较好的可行性和较高的可靠性,可作为今后类似工程冻结施工温度场的预测方法。Abstract: Currently, cross-passages in the section of twin-tunnels have become an indispensable part, which has the functions, such as drainage, fire prevention, connecting the two tunnels, and acting as "escape passages" in tunnel accidents. To accurately grasp the development law of the temperature field during construction of tunnel cross-passages in seashore area in Xiamen using the ground freezing method, the full process monitoring and analysis of the ground freezing construction of No.2 cross-passage in Ma-ji section of Xiamen Metro Line 6 were conducted. Correspondingly, the three-dimensional finite element model was established to analyze the variation law of the temperature field in the process of freezing construction. The numerical results were compared with the measurements of some typical points. The results show that the tendency of the temperature change of each measuring point is basically the same, and the deeper the position of the point, the better the effect of freezing. In the early stage, the discrepancies of the pressures between various pressure relief holes are mainly caused by the inherent earth pressure of points at different positions. The closer to the freezing pipes the soil is, the faster the temperature drops, the higher the strength of the frozen soil. Accordingly, the freezing efficiency is enhanced after the formation of a frozen wall. The temperature field by the numerical analysis is unsymmetrical. This numerical modeling method is of convenience, good feasibility, and high reliability. It can be an approach to predict the temperature field in the process of freezing construction of similar projects.
-
Key words:
- Seashore area /
- Cross-passage /
- Ground freezing method /
- Temperature field /
- Numerical modeling
-
表 1 土体物理力学参数
Table 1. Physical and mechanical parameters of soils
土层 杨氏模量/MPa 土体饱和密度/kg·m-3 黏聚力/kPa 内摩擦角/(°) 泊松比 含水率/% 孔隙比 热膨胀系数/℃-1 传导率/W·m-1·℃-1 比热容/J·m-3·℃-1 1# 14 1810 25 14.6 0.29 31.9 0.96 -4×10-6 2.21 3.2×106 表 2 冻结管设计参数
Table 2. Design parameters of freezing pipes
冻结孔 定位角度/(°) 打孔仰角/(°) 深度/m 孔数/个 总孔深/m 备注 A1~A6 55 14.8 5.350 6 32.100 A7~A13 39 7.7 9.284 7 64.988 A14~A15 30.8 6.0 8.620 2 17.240 D1~D2 26 4.6 8.071 2 16.142 D3~D4 14.6 3.0 7.444 2 14.888 D5~D6 6.5 0 7.536 2 15.072 透孔 D7~D8 -6 -1.5 7.561 2 15.122 透孔 D9~D10 -14 -4.5 7.522 2 15.044 D11~D12 -22 -7.4 8.235 2 16.470 D13~D14 -30 -10.8 10.354 2 20.708 D15~D16 -38 -15.2 9.942 2 19.884 D17~D18 -46 -20.7 9.612 2 19.224 D19~D20 -54 -26.6 9.296 2 18.592 D21~D22 -63 -32.2 9.130 2 18.260 D23~D24 -71 -38.3 9.090 2 18.180 M1~M9 -79 -43.7 9.211 9 82.899 M10~M15 -90 -51.4 6.457 6 38.742 N1~N8 -79 -43.7 8.264 8 66.112 N9~N15 -90 -51.4 6.457 7 45.199 B1~B6 49.4 25.6 3.547 6 21.282 合计 75 576.148 表 3 测温孔及泄压孔设计参数
Table 3. Parameters of temperature measuring holes and pressure relief holes
孔类型 钻孔编号 定位角度/(°) 打孔仰角/(°) 打孔水平角/(°) 深度/m 孔数/个 总孔深/m 测温孔 C1~C2 20 4 0 2.0 2 4.0 C3~C5 31.5 -2.6 0 2.0 3 6.0 C6~C9 -57.7 -38.6 0 5.0 4 20.0 C10~C11 -35.1 0 0 2.0 2 4.0 合计 11 34.0 泄压孔 X1、X3 0 0 0 3.0 2 6.0 X2、X4 -36 0 0 3.0 2 6.0 合计 4 12.0 表 4 不同断面冻结情况
Table 4. Freezing state of different sections
截面 喇叭口左处冻结帷幕 冻结管交叉区域 喇叭口右处冻结帷幕 冻结壁有效厚度/mm 2008 2106 2030 平均温度/℃ -13.596 -13.942 -13.637 -
Afshani A,Akagi H. 2015. Artificial ground freezing application in shield tunneling[J]. Japanese Geotechnical Society Special Publication,3 (2): 71-75. doi: 10.3208/jgssp.v03.j01 Cai H B, Li S, Liang Y, et al. 2019. Model test and numerical simulation of frost heave during twin-tunnel construction using artificial ground-freezing technique[J]. Computers and Geotechnics, 115(1): 103115. Cao H L. 2010. Thawing settlement control of subway tunnel construction by artificial ground freezing[J]. Chinese Journal of Underground Space and Engineering, 6 (2): 387-390, 395. Chen J F. 2019. Study on application technology of freezing method in cross-sea communication channel construction[C]//Zhongzhi Building Research Institute Co., Ltd. Proceedings of Civil Engineering New Materials, New Technology and Engineering Application Exchange Conference(Volume 2). Beijing: Industrial Construction Magazine: 5. Chen J H, Liu T Y, Zhang C C, et al. 2019. Analyzing development characteristics of freezing temperature field to ultra-long connected aisle[J]. Journal of Railway Science and Engineering, 16 (12): 3059-3067. Editorial Committee of "Well Construction Engineering Manual". 2003. Concise well construction manual[M]. Beijing: China Coal Industry Publishing House. Gao X J, Li M Y, Zhang J W, et al. 2021. Field research on artificial freezing of subway cross passage in water-rich silty clay layer[J]. Chinese Journal of Rock Mechanics and Engineering, 40 (6): 1267-1276. Hou Y F, Wang L, Wu Y K, et al. 2014. The concrete surfusion and its cause in freezing and thawing cycle[J]. Fly Ash Comprehensive Utilization, 27 (6): 15-17, 21. doi: 10.3969/j.issn.1005-8249.2014.06.004 Hu J, Liu Y, Hong W, et al. 2017. Finite-Element analysis of heat transfer of horizontal ground-freezing method in shield-driven tunneling[J]. International Journal of Geomechanics, 17 (10): 1-11. Hu X D, Fang T, Chen J, et al. 2018. A large-scale physical model test on frozen status in freeze-sealing pipe roof method for tunnel construction[J]. Tunnelling and Underground Space Technology, 72 (1): 55-63. Hu X R, Rao Z Q, Wang R T. 2019. Numerical simulations for freezing method in connecting channel excavation of Nanchang subway[J]. Chinese Journal of Underground Space and Engineering, 15 (S1): 286-293. Li C Q, Ye W J, Hu S P, et al. 2020. Experimental study on thermophysical parameters of high water gravel formation for freezing construction[J]. Journal of Engineering Geology, 28 (3): 510-519. Li D Y, Wang H, Zhang Q H. 2003. Measures analysis of freezing method applied to connected aisle in Nanjing metro tunnel[J]. Rock and Soil Mechanics, 24 (S2): 365-368. Liu H, Wang Y, Wang H J, et al. 2022. Experimental study on frost heaving pressure evolution of rock ice cracks under freezing-thawing cycles[J]. Journal of Engineering Geology, 30(4): 1122-1131. Sun L Q, Ren Y X, Yan S W, et al. 2015. Numerical simulation method for thermal-stress coupling in artificial freezing process[J]. Chinese Journal of Geotechnical Engineering, 37 (S2): 137-142. Tang Y Q, Zhao W Q, Zhou J. 2020. Laboratory test study on moisture migration within mucky clay under unidirectional freezing in closed system[J]. Journal of Engineering Geology, 28 (5): 935-941. Wang X B, Yang P, Zhang T. 2008. Stuy on thaw settlement behavior of artificial freezing soil[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 32 (4): 108-112. Yang P, Chen J, Zhang S G, et al. 2017. Whole range monitoring for temperature and displacement fields of cross passage in soft soil by AGF[J]. Chinese Journal of Geotechnical Engineering, 39 (12): 2226-2234. Yang P, Ke J M, Wang J G, et al. 2006. Numerical simulation of frost heave with coupled water freezing, temperature and stress fields in tunnel excavation[J]. Computers and Geotechnics, 33 (6): 330-341. Yuan B Y, Zhao Y R, Zhu X F, et al. 2005. Construction monitoring and feedback analysis of a deep foundation pit with frozen ground and pile support[J]. Journal of Engineering Geology, 13 (4): 533-537. Zhang H Y. 2013. Experimental study on the frost heave characteristics of artificial freezing clay[D]. Huainan: Anhui University of Science and Technology. Zheng L F, Gao Y T, Zhou Y, et al. 2020. Research on surface frost heave and thaw settlement law and optimization of frozen wall thickness in shallow tunnel using freezing method[J]. Rock and Soil Mechanics, 41 (6): 2110-2121. 曹红林. 2010. 地铁隧道冻结法施工融沉控制方案及实施[J]. 地下空间与工程学报, 6 (2): 387-390, 395. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201002033.htm 陈建福. 2019. 跨海联络通道冻结施工设计技术研究[C]//中治建筑研究总院有限公司. 土木工程新材料、新技术及其工程应用交流会论文集(下册). 北京: 工业建筑杂志社: 5. 陈军浩, 刘桐宇, 张潮潮, 等. 2019. 超长联络通道冻结温度场发展特性研究[J]. 铁道科学与工程学报, 16 (12): 3059-3067. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201912020.htm 郜新军, 李铭远, 张景伟, 等. 2021. 富水粉质黏土中地铁联络通道冻结法试验研究[J]. 岩石力学与工程学报, 40 (6): 1267-1276. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202106017.htm 侯云芬, 王玲, 吴越恺, 等. 2014. 冻融循环过程中混凝土的过冷现象及其原因分析[J]. 粉煤灰综合利用, 27 (6): 15-17, 21. https://www.cnki.com.cn/Article/CJFDTOTAL-FMLE201406004.htm 胡小荣, 饶志强, 汪日堂. 2019. 南昌地铁联络通道冻结法模拟[J]. 地下空间与工程学报, 15(增刊1): 286-293. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE2019S1042.htm 建井工程手册编委会. 2003. 简明建井工程手册[M]. 北京: 煤炭工业出版社. 李大勇, 王晖, 张庆贺. 2003. 南京地铁联络通道冻结法施工措施分析[J]. 岩土力学, 24(增刊2): 365-368. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2003S2085.htm 李长清, 叶万军, 胡双平, 等. 2020. 高富水卵砾石地层热物理参数试验研究[J]. 工程地质学报, 28 (3): 510-519. doi: 10.13544/j.cnki.jeg.2018-382 刘昊, 王宇, 王华建, 等. 2022. 冻融循环作用下岩石含冰裂隙冻胀力演化试验研究[J]. 工程地质学报, 30(4): 1122-1131. doi: 10.13544/j.cnki.jeg.2020-204 孙立强, 任宇晓, 闫澍旺, 等. 2015. 人工冻土冻结过程中热-力耦合的数值模拟方法研究[J]. 岩土工程学报, 37(增刊2): 137-142. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2015S2028.htm 唐益群, 赵文强, 周洁. 2020. 封闭系统单向冻结淤泥质黏土水分迁移特性研究[J]. 工程地质学报, 28 (5): 935-941. doi: 10.13544/j.cnki.jeg.2020-268 王效宾, 杨平, 张婷. 2008. 人工冻土融沉特性试验研究[J]. 南京林业大学学报(自然科学版), 32 (4): 108-112. https://www.cnki.com.cn/Article/CJFDTOTAL-NJLY200804028.htm 杨平, 陈瑾, 张尚贵, 等. 2017. 软弱地层联络通道冻结法施工温度及位移场全程实测研究[J]. 岩土工程学报, 39 (12): 2226-2234. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201712013.htm 袁宝远, 赵燕容, 朱旭芬, 等. 2005. 排桩冻结法深基坑施工监测与反馈分析[J]. 工程地质学报, 13 (4): 533-537. http://www.gcdz.org/article/id/9216 张海银. 2013. 人工冻结黏土冻胀特性试验研究[D]. 淮南: 安徽理工大学. 郑立夫, 高永涛, 周喻, 等. 2020. 浅埋隧道冻结法施工地表冻胀融沉规律及冻结壁厚度优化研究[J]. 岩土力学, 41 (6): 2110-2121. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202006036.htm -