标准贯入试验锤击贯入能量测试与分析

陈龙伟 陈童 王云龙 王维铭

陈龙伟, 陈童, 王云龙, 等. 2023. 标准贯入试验锤击贯入能量测试与分析[J]. 工程地质学报, 31 (5): 1757-1766. doi: 10.13544/j.cnki.jeg.2021-0209
引用本文: 陈龙伟, 陈童, 王云龙, 等. 2023. 标准贯入试验锤击贯入能量测试与分析[J]. 工程地质学报, 31 (5): 1757-1766. doi: 10.13544/j.cnki.jeg.2021-0209
Chen Longwei, Chen Tong, Wang Yunlong, et al. 2023. Analysis of hammer energy transfer ratio of standard penetration test[J]. Journal of Engineering Geology, 31(5): 1757-1766. doi: 10.13544/j.cnki.jeg.2021-0209
Citation: Chen Longwei, Chen Tong, Wang Yunlong, et al. 2023. Analysis of hammer energy transfer ratio of standard penetration test[J]. Journal of Engineering Geology, 31(5): 1757-1766. doi: 10.13544/j.cnki.jeg.2021-0209

标准贯入试验锤击贯入能量测试与分析

doi: 10.13544/j.cnki.jeg.2021-0209
基金项目: 

中国地震局工程力学研究所基本科研业务费专项资助项目 2020B01

详细信息
    通讯作者:

    陈龙伟(1983-),男,博士,研究员,博(硕)士生导师,主要从事岩土地震工程方面的科研工作.E-mail:chenlw@iem.ac.cn

  • 中图分类号: TU435

ANALYSIS OF HAMMER ENERGY TRANSFER RATIO OF STANDARD PENETRATION TEST

Funds: 

Scientific Research Fund of Institute of Engineering Mechanics, China Earthquake Administration 2020B01

  • 摘要: 能量传递率是衡量贯入类试验锤击效率的一个重要指标。国外对这一指标需要进行现场实测,进而修正贯入试验的锤击数,建立评价场地承载力、液化势等特性的标准化锤击数。国内规范中,则较少考虑贯入试验的锤击能量传递率的问题,且缺少现场试验测试数据,导致基于贯入类试验锤击数的地基评价方法难以与国外标准进行横向对比。为解决这一问题,选取川滇地区西昌地震实验场的3个勘察试验点。采用能量测试仪实测标准贯入试验能量传递率,研究我国常规SPT试验装置锤击效率,并评价其稳定性。试验实测结果显示,现场标准贯入试验的锤击能量传递率均值基本超过75%。能量传递率随着贯入深度的增加稍有增加,地表下20 m范围内增长幅值为10%左右。试验结果可为评价我国常规SPT试验设备的锤击效率提供依据。
  • 图  1  PDA实测锤击过程中轴向力和速度时程曲线

    Figure  1.  The axial force time history and velocity time history measured during hammering

    图  2  现场标准贯入试验点分布

    Figure  2.  The selected sites for performing SPT tests

    图  3  现场SPT触探试验装置以及能量测试仪

    Figure  3.  In-situ SPT apparatus with a 63.5 kg donut hammer falling to anvil above PDA energy measurement

    图  4  现场SPT试验采用的63.5 kg穿心锤和贯入器

    Figure  4.  In-situ SPT apparatus with a 63.5 kg donut hammer falling to anvil above PDA energy measurement

    图  5  钻孔QZK08取土样

    Figure  5.  The soil sample collected from QZK08

    图  6  试验场地地质土层剖面图

    Figure  6.  Geological section of the test sites

    图  7  试验场地的实测SPT锤击能量传递率随深度的分布

    Figure  7.  The energy transfer ratios varying with depth

    图  8  QZK01场地能量试验锤击数与能量传递率统计图

    Figure  8.  Histograms showing numbers of hammer drops with ETR values conducted at the QZK01 site

    图  9  QZK05场地能量试验锤击数与能量传递率统计图

    Figure  9.  Histograms showing numbers of hammer drops with ETR values conducted at QZK05 site

    图  10  QZK08场地能量试验锤击数与能量传递率统计图

    Figure  10.  Histograms showing numbers of hammer drops with ETR values conducted at the QZK08 site

    图  11  试验场地的实测SPT锤击能量传递率随深度的分布

    Figure  11.  Distribution of ETR values lumped of the tested sites with respect to depth

    图  12  所有场地能量试验锤击数与能量传递率统计图

    Figure  12.  Histograms of ETR values which are lumped of the three tested sites

    图  13  不同深度能量试验锤击数与能量传递率统计图

    Figure  13.  Histograms of ETR values with respect to different depth bins

    表  1  现场SPT试验实测能量传递率统计值

    Table  1.   ETR statistics of the SPT tests

    试验点 能量传递率(ETR)/%
    均值 均值+标准差 均值-标准差 标准差
    QZK01 77.03 83.50 70.56 6.47
    QZK05 80.61 86.90 74.32 6.29
    QZK08 72.99 83.83 62.15 10.84
    下载: 导出CSV

    表  2  现场不同深度SPT试验实测能量传递率统计值

    Table  2.   ETR statistics with respect to depth bins

    测试深度/m 能量传递率(ETR)/%
    均值 均值+标准差 均值-标准差 标准差
    <5.0 65.36 74.57 56.15 9.21
    5.0~10.0 71.60 80.41 62.79 8.81
    10.0~15.0 80.57 85.86 75.28 5.29
    >15.0 78.55 87.04 70.06 8.49
    下载: 导出CSV
  • Biringen E, Davie J. 2008. Assessment of energy transfer ratio in SPT using Automatic Hammers[C]//Proceedings of Sessions of GeoCongress. New Orleans, LA: [s. n. ]: 356-363.
    Cao Z Z, Liu H D, Yuan X M, et al. 2016. Reliability of Chinese dynamic penetration test for liquefaction evaluation of gravelly soils[J]. Chinese Journal of Geotechnical Engineering, 38 (1): 163-169.
    Cao Z Z, Youd T L, Yuan X M. 2013. Chinese dynamic penetration test for liquefaction evaluation in gravelly soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 139 (8): 1320-1333. doi: 10.1061/(ASCE)GT.1943-5606.0000857
    Chen L W, Wang Y L, Chen Y X. 2020. Stability of DPT hammer efficiency and relationships of blow-counts obtained by different DPT apparatuses[J]. Chinese Journal of Geotechnical Engineering, 42 (6): 1041-1049.
    Chen X J. 2019. Experimental study on seismic dilatometer(SDMT) of weathering granite profiles in Xiamen[J]. Journal of Engineering Geology, 27 (4): 825-831.
    Editorial office of Engineering Geological Handbook. 2012. Engineering Geological Handbook[M]. 4th ed. Beijing: China Architecture & Building Press.
    Feng M Z. 1986. Discussion on correction formula of rod length in standard penetration test[J]. Engineering Investigation, (2): 15-16.
    Ge Y X, Zhang J, Zhu L W, et al. 2022. Chinese and ASTM standard penetration tests at sand site: penetration energy analysis and correlation of blow counts[J]. Journal of Engineering Geology, 30(2): 507-519.
    Gibbs H J, Holtz W G. 1957. Research on determining the Density of sands by spoon penetration testing[C]//Proceeding of the 4th International Conference on Soil Mechanics and Foundation Engineering: 35-39.
    Hu Y, Wang Y. 2020. Identification of subsurface soil stratification using cone penetration tests and Bayesian learning[J]. Journal of Engineering Geology, 28 (5): 966-972.
    Lee C H, Lee J S, An S W, et al. 2010. Effect of secondary impacts on SPT rod energy and sampler penetration[J]. Journal of Geotechnical and Geoenvironmental Engineering, 136 (3): 522-526. doi: 10.1061/(ASCE)GT.1943-5606.0000236
    Liao S C, Whitman R V. 1986. Overburden correction factors for SPT in sand[J]. Journal of Geotechnical Engineering, 112 (3): 373-377. doi: 10.1061/(ASCE)0733-9410(1986)112:3(373)
    Liao X B, Guo X Y, Du Y. 2013. Correlation analysis of standard penetration test results on British and Chinese standard equipments[J]. Rock and Soil Mechanics, 34 (1): 143-147.
    Lu K Y, Li Z Y, Yuan X M, et al. 2020. Influence factors of standard penetration test in China and over the world[J]. Journal of Seismological Research, 43 (3): . doi: 10.3969/j.issn.1000-0666.2020.03.022
    Meng Q Z, Wang D B, Sun X, et al. 2020. Experimental study on physical and mechanical properties of travertine in Bolivia[J]. Journal of Engineering Geology, 28 (6): 1172-1177.
    Nie Q K, Jia X X, Qin L, et al. 2017. Field tests on the effects of diameter of drill pipe on number N of SPT[J]. Chinese Journal of Geotechnical Engineering, 39 (S1): 53-58.
    Peck R B, Hansen W W, Thornburn T H. 1974. Foundation engineering[M]. New York: John Wiley and Sons.
    Qi G Q. 1994. Application of one-dimension wave motion theory in SPT rod modification principle[J]. Journal of Northeast Agricultural University, 25 (2): 175-181.
    Seed H B, Idriss I M, Arango I. 1983. Evaluation of liquefaction potential using field performance data[J]. Journal of Geotechnical Engineering, 109 (3): 458-482. doi: 10.1061/(ASCE)0733-9410(1983)109:3(458)
    Seed H B, Tokimatsu K, Harder L F, et al. 1985. Influence of SPT procedures in soil liquefaction resistance evaluations[J]. Journal of Geotechnical Engineering, 111 (12): 1425-1445. doi: 10.1061/(ASCE)0733-9410(1985)111:12(1425)
    Shi L, Fu S J, Yuan W C, et al. 2016. Experimental study on axial impacting force and hammer impacting energy in rod of heavy dynamic penetration test[J]. Chinese Journal of Rock Mechanics and Engineering, 35 (1): 201-208.
    Skempton A W. 1986. Standard penetration test procedures and the effects in sands of overburden pressure, relative density, particlesize, ageing and overconsolidation[J]. Geotechniqu, 37 (3): 411-412.
    The National Standards Compilation Group of People's Republic of China. 2010. Code for seismic design of buildings(GB 50011-2010)[S]. Beijing: China Architecture and Building Press.
    The National Standards Compilation Group of People's Republic of China. 2009. Code for investigation of geotechnical engineering(GB50021-2001)[S]. Beijing: China Architecture and Building Press.
    The National Standards Compilation Group of People's Republic of China. 2011. Code for design of building foundation(GB50021-2001)[S]. Beijing: China Architecture and Building Press.
    Valiquette M, Robinson B, Borden R H. 2010. Energy efficiency and rod length effect in standard penetration test hammers[J]. Transportation Research Record Journal of the Transportation Research Board, 2186: 47-56. doi: 10.3141/2186-06
    Wan J N, Liu Y H. 2013. Experimental study on measurements hitting energy with standard penetration test[J]. Electric Power Survey & Design, (6): 14-18, 23.
    Wu X D. 2014. Comparison of the specification for SPT between China and foreign standard[J]. Railway Investigation and Surveying, 40 (4): 32-36.
    Xing H F, Xu C, Shi Z M, et al. 2015. In situ testing of geotechnical engineering[M]. Shanghai: Tongji University Press.
    Xue R K, Li S, Lin L, et al. 2020. Physical indexes of carbonate sand with dynamic penetration test[J]. Journal of Engineering Geology, 28 (4): 734-739.
    Youd T L, Idriss I M, Ronald D, et al. 2001. Liquefaction resistance of soils: Summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils[J]. Journal of Geotechnical and Geoenvironmental Engineering 127 (10): 817-833. doi: 10.1061/(ASCE)1090-0241(2001)127:10(817)
    Zhang P, Tian H H. 1999. The study on amendment of dynamic sounding impact factors[J]. Journal of Shenyang University, (2): 80-83.
    曹振中, 刘荟达, 袁晓铭, 等. 2016. 基于动力触探的砾性土液化判别方法通用性研究[J]. 岩土工程学报, 38 (1): 163-169. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201601020.htm
    陈龙伟, 王云龙, 陈玉祥. 2020. 不同类型DPT试验锤击能量稳定性及锤击数转化关系探讨[J]. 岩土工程学报, 42 (6): 1041-1049. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202006009.htm
    陈晓坚. 2019. 厦门花岗岩风化层的地震扁铲侧胀(SDMT)试验研究[J]. 工程地质学报, 27 (4): 825-831. doi: 10.13544/j.cnki.jeg.2018-238
    冯铭璋. 1986. 关于标准贯入试验杆长修正公式的探论[J]. 工程勘察, (2): 15-16. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC198602006.htm
    葛一荀, 张洁, 祝刘文, 等. 2022. 砂土场地国标与美标标准贯入试验能量分析及击数转换关系研究[J]. 工程地质学报, 30(2): 507-519. doi: 10.13544/j.cnki.jeg.2020-643
    工程地质手册编委会. 2012. 工程地质手册[M]. 第4版. 北京: 中国建筑工业出版社.
    胡越, 王宇. 2020. 静力触探识别场地土层分布的贝叶斯学习方法研究[J]. 工程地质学报, 28 (5): 966-972. doi: 10.13544/j.cnki.jeg.2020-263
    廖先斌, 郭晓勇, 杜宇. 2013英标和国标标贯设备试验结果相关性分析[J]. 岩土力学, 34 (1): 143-147. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201301021.htm
    卢坤玉, 李兆焱, 袁晓铭, 等. 2020. 国内外标准贯入测试影响因素研究[J]. 地震研究, 43 (3): 582-591, 604. https://www.cnki.com.cn/Article/CJFDTOTAL-DZYJ202003022.htm
    孟庆洲, 王殿斌, 孙玺, 等. 2020. 钙华物理力学性质试验研究[J]. 工程地质学报, 28 (6): 1172-1177. doi: 10.13544/j.cnki.jeg.2019-225
    聂庆科, 贾向新, 秦禄盛, 等. 2017. 钻杆直径对标准贯入试验N值影响的试验研究[J]. 岩土工程学报, 39 (S1): 53-58. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2017S1012.htm
    戚国强. 1994. 一维波动理论在SPT杆长修正机理研究中的应用[J]. 东北农业大学学报, 25 (2): 175-181. https://www.cnki.com.cn/Article/CJFDTOTAL-DBDN402.013.htm
    石磊, 傅少君, 袁稳沉, 等. 2016. 重型动力触探轴向冲击力与锤击能试验研究[J]. 岩石力学与工程学报, 35 (1): 201-208. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201601020.htm
    万江南, 刘裕华. 2013. 标准贯入试验测量击打能量的试验研究[J]. 电力勘测设计, (6): 14-18, 23. https://www.cnki.com.cn/Article/CJFDTOTAL-DLKC201306005.htm
    吴晓东. 2014. 中外标准对标准贯入试验规定之对比[J]. 铁道勘察, 40 (4): 32-36. https://www.cnki.com.cn/Article/CJFDTOTAL-TLHC201404010.htm
    邢皓枫, 徐超, 石振明, 等. 2015. 岩土工程原位测试[M]. 上海: 同济大学出版社.
    薛润坤, 李飒, 林澜, 等. 2020. 基于动力触探钙质砂物理性质指标评价研究[J]. 工程地质学报, 28 (4): 734-739. doi: 10.13544/j.cnki.jeg.2019-301
    张平, 田红花. 1999. 有关动力触探影响因素修正问题的探讨[J]. 沈阳大学学报, (2): 80-83. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDA199902017.htm
    中华人民共和国国家标准编写组. 2009. 岩土工程勘察规范(GB50021-2001)[S]. 北京: 中国建筑工业出版社.
    中华人民共和国国家标准编写组. 2010. 建筑抗震设计规范(GB 50011-2010)[S]. 北京: 中国建筑工业出版社.
    中华人民共和国国家标准编写组. 2011. 建筑地基基础设计规范(GB50007-2011)[S]. 北京: 中国建筑工业出版社.
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  60
  • HTML全文浏览量:  11
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-12
  • 修回日期:  2021-06-17
  • 刊出日期:  2023-10-25

目录

    /

    返回文章
    返回