下穿填埋场隧道综合超前预报与防控措施研究

赵勇 张晓磊 冯世进

赵勇, 张晓磊, 冯世进. 2022. 下穿填埋场隧道综合超前预报与防控措施研究[J]. 工程地质学报, 30(2): 432-441. doi: 10.13544/j.cnki.jeg.2021-0217
引用本文: 赵勇, 张晓磊, 冯世进. 2022. 下穿填埋场隧道综合超前预报与防控措施研究[J]. 工程地质学报, 30(2): 432-441. doi: 10.13544/j.cnki.jeg.2021-0217
Zhao Yong, Zhang Xiaolei, Feng Shijin. 2022. Comprehensive geological prediction and engineering countermeasures for tunneling under landfill[J]. Journal of Engineering Geology, 30(2): 432-441. doi: 10.13544/j.cnki.jeg.2021-0217
Citation: Zhao Yong, Zhang Xiaolei, Feng Shijin. 2022. Comprehensive geological prediction and engineering countermeasures for tunneling under landfill[J]. Journal of Engineering Geology, 30(2): 432-441. doi: 10.13544/j.cnki.jeg.2021-0217

下穿填埋场隧道综合超前预报与防控措施研究

doi: 10.13544/j.cnki.jeg.2021-0217
基金项目: 

广西重点实验室开放课题项目 2019ZDK029

详细信息
    通讯作者:

    赵勇(1992-),男,博士生,主要从事岩土工程、地下工程领域的科研工作. E-mail:1810023@tongji.edu.cn

  • 中图分类号: U452.1

COMPREHENSIVE GEOLOGICAL PREDICTION AND ENGINEERING COUNTERMEASURES FOR TUNNELING UNDER LANDFILL

Funds: 

the Open Research Project of Guangxi Key Laboratory 2019ZDK029

  • 摘要: 深圳坂银通道鸡公山隧道的设计路线下穿了深圳下坪固体废弃物填埋场,由于钻孔分析等前期地质勘察无法在该区域开展,下穿填埋场隧道区段施工存在地质状况不明、填埋场渗滤液及填埋气泄露等风险,现有隧道施工超前预报体系不适用于隧道下穿填埋场引发环境灾害问题。针对该难题,本文基于地震预报法(TGP)、瞬变电磁法(TEM)、超前钻孔、取样化学分析等多种方法,构建了隧道下穿填埋场施工超前地质预报体系,并对下穿填埋场隧道区段的围岩质量和渗滤液、填埋气渗漏情况进行了探测与综合分析。结果表明:(1)综合超前预报方法能够提高隧道前方围岩级别判定准确性;(2)填埋场下方存在联通至隧道施工区域的潜在渗滤液渗流通道,但尚未有渗滤液下渗情况发生,隧道开挖过程也无有毒有害气体逸出;(3)针对渗滤液渗漏风险隧道区段,采取全包防水和提升防渗材料等级等方式,可有效保障隧道施工与运营安全。本文研究成果可为隧道穿越环境风险区域施工的超前预报工作提供参考借鉴。
  • 图  1  鸡公山隧道位置与地质纵断面剖面图

    Figure  1.  The location and geological profile of Jigongshan Tunnel

    图  2  下穿下坪填埋场隧道综合超前预报体系

    Figure  2.  Comprehensive geological prediction system for tunneling under a landfill

    图  3  TGP测试布置

    a. TGP测试装置;b. 隧道横截面TGP钻孔布置;c. 隧道纵向TGP钻孔布置

    Figure  3.  Layout of the TGP testing

    图  4  隧道RK3+685~RK3+805区段TGP测试结果图

    a. 纵波绕射偏移;b. 横波绕射偏移;c. 比速度及反射符号分布

    Figure  4.  Results of TGP testing in the tunnel section of RK3+685~RK3+805

    图  5  隧道RK3+845~RK4+000区段TGP测试结果图

    a. 纵波绕射偏移;b. 横波绕射偏移;c. 比速度及反射符号分布

    Figure  5.  Results of TGP testing in the tunnel section of RK3+845~RK4+000

    图  6  TEM测试示意图

    a. TEM测试装置;b. 隧道横截面TEM测点布置;c. TEM测试方向布置

    Figure  6.  Layout of the TEM testing

    图  7  TEM测试结果图

    Figure  7.  Results of the TEM testing

    图  8  每日隧道内填埋气典型气体含量变化图(2018.6.1~2018.6.7,RK3+787~RK3+808)

    Figure  8.  Variations of typical content of landfill gas in the tunnel(2018.6.1~2018.6.7,RK3+787~RK3+808)

    图  9  隧道RK3+789~RK3+959区间段综合超前预报测试成果图

    Figure  9.  Results of comprehensive geological prediction in the tunnel section of RK3+789~RK3+959

    图  10  下穿下坪填埋场隧道渗滤液防护措施

    Figure  10.  Leachate-proofing measures for tunneling under the Xiaping Landfill

    表  1  水样检测结果表

    Table  1.   Results of water sample analysis

    检测项目 pH
    色度
    /倍
    悬浮物
    /mg·L-1
    五日生化
    需氧量
    (BOD5)
    化学需
    氧量
    (CODCr)
    氨氮
    /mg·L-1
    总磷
    /mg·L-1
    总氮
    /mg·L-1
    粪大肠
    菌群
    /个·L-1
    六价铬
    /mg·L-1
    总铬
    /mg·L-1

    /mg·L-1

    /mg·L-1

    /mg·L-1

    /mg·L-1
    检测结果 7.70 2 4 1.5 5 0.544 0.01 0.90 2900 0.004
    (L)
    0.004
    (L)
    0.01
    (L)
    0.001
    (L)
    0.00004
    (L)
    0.0003
    (L)
    规范限值 40 30 30 100 25 3 40 10000 0.05 0.1 0.1 0.01 0.001 0.1
    1.“(L)”表示检测结果低于方法检出限;2.“—”表示《生活垃圾填埋场污染控制标准》(GB 16889-2008)对该项未做限值要求
    下载: 导出CSV
  • Gou D Q,Xie X G. 2017. Common geological prediction methods and its application in karst tunnel[J]. Journal of Railway Engineering Society,34 (1):75-80.
    Huang Y, Meng X L, Hu X W, et al. 2021. Major engineering geological problems and countermeasures along traffic corridor from Ya'an to Nyingchi[J]. Journal of Engineering Geology, 29 (2): 307-325.
    Jiang J, Yang G, Deng Z, et al. 2007. Pilot-scale experiment on anaerobic bioreactor landfills in China[J]. Waste Management, 27 (7): 893-901. doi: 10.1016/j.wasman.2006.07.008
    Jiang J, Zhang C, Li C, et al. 2009. A new method applied for the evaluation of municipal solid waste landfill stabilization[J]. Environmental Engineering Science, 26 (6): 1123-1130. doi: 10.1089/ees.2008.0322
    Lan H X, Zhang N, Li L P, et al. 2021. Risk analysis of major engineering geological hazards for Sichuan-Tibet Railway in the phase of feasibility study[J]. Journal of Engineering Geology, 29 (2): 326-341.
    Li S C, Liu B, Sun H F, et al. 2014. State of art and trends of advanced geological prediction in tunnel construction[J]. Chinese Journal of Rock Mechanics and Engineering, 33 (6): 1090-1113.
    Li S C, Xue Y G, Zhang Q S, et al. 2008. Key technology study on comprehensive prediction and early-warning of geological hazards during tunnel construction in high-risk karst areas[J]. Chinese Journal of Rock Mechanics and Engineering, 27 (7): 1297-1307.
    Li T B, Meng L B, Zhu J, et al. 2009. Comprehensive analysis method for advanced forecast of geology in tunnels[J]. Chinese Journal of Rock Mechanics and Engineering, 28 (12): 2429-2436.
    Liu X R, Liu Y Q, Yang Z P, et al. 2015. Synthetic advanced geological prediction technology for tunnels based on GPR[J]. Chinese Journal of Geotechnical Engineering, 37 (S2): 51-56.
    Ma K, Xu J, Zhang Z L, et al. 2009. Research on advanced prediction and forecast of Xuefeng Mountain Highway tunnel[J]. Rock and Soil Mechanics, 30 (5): 1381-1386.
    Shi L S, Gao W X, Zhou S S, et al. 2016. Study of surrounding rock classification method based on TSP advanced geological prediction technology[J]. Acta Armamentarii, 37 (S2): 128-132.
    Shu S, Wang S D, Li G, et al. 2018. The application of TEM to guiding advance exploration drilling of complex geological tunnel[J]. Geophysical and Geochemical Exploration, 42 (6): 1311-1316.
    Su M X, Li S C, Xue Y G, et al. 2010. TEM apparent longitudinal conductance interpretation in tunnel geological forecast[J]. Chinese Journal of Geotechnical Engineering, 32 (11): 1722-1726.
    Wang S R. 2021. Application of aerial geophysical prospecting to railway tunnel survey in southeast Tibet[J]. Journal of Engineering Geology, 29 (2): 426-434.
    Wang Z Q, Ma X L. 2019. Comprehensive geological prediction technology for highway tunnels in mountainous areas[J]. Highway Engineering, 44 (1): 238-243.
    Xiao S A, Wu S L. 2004. Geological prediction technique for tunnel construction under complex geological conditions[J]. Chinese Journal of Engineering Geophysics, 1 (2): 159-165.
    Yang J H, Yan C B, Miao D, et al. 2019. Comprehensive advanced geological prediction methods for tunnel construction with double shield TBM[J]. Journal of Engineering Geology, 27 (2): 250-259.
    Zhao Y G, Jiang H, Zhao X P. 2008. The technical bug of TSP203 and application of TST technique[J]. Chinese Journal of Engineering Geophysics, 5 (3): 266-273.
    Zhao Y G, Liu H, Sun Y, et al. 2003. Research progress in tunnel geological prediction[J]. Progress in Geophysics, 18 (3): 460-464.
    Zhou D, Liu Z H, Wu H, et al. 2015. Application of the comprehensive geological prediction techniques in the Lingjiao Tunnel[J]. Modern Tunnelling Technology, 52 (5): 171-177.
    Zhou J, Xi J Z. 2017. Application of a comprehensive geological prediction system to construction of the new Tongluoshan tunnel[J]. Modern Tunnelling Technology, 54 (4): 207-212.
    苟德强, 谢衔光. 2017. 岩溶隧道地质预报的几种主要方法及应用研究[J]. 铁道工程学报, 34 (1): 75-80. doi: 10.3969/j.issn.1006-2106.2017.01.014
    黄勇, 孟祥连, 胡卸文, 等. 2021. 雅安至林芝交通廊道重大工程地质问题与对策研究[J]. 工程地质学报, 29 (2): 307-325. doi: 10.13544/j.cnki.jeg.2021-0128
    兰恒星, 张宁, 李郎平, 等. 2021. 川藏铁路可研阶段重大工程地质风险分析[J]. 工程地质学报, 29 (2): 326-341. doi: 10.13544/j.cnki.jeg.2021-0114
    李术才, 刘斌, 孙怀凤, 等. 2014. 隧道施工超前地质预报研究现状及发展趋势[J]. 岩石力学与工程学报, 33 (6): 1090-1113. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201406003.htm
    李术才, 薛翊国, 张庆松, 等. 2008. 高风险岩溶地区隧道施工地质灾害综合预报预警关键技术研究[J]. 岩石力学与工程学报, 27 (7): 1297-1307. doi: 10.3321/j.issn:1000-6915.2008.07.001
    李天斌, 孟陆波, 朱劲, 等. 2009. 隧道超前地质预报综合分析方法[J]. 岩石力学与工程学报, 28 (12): 2429-2436. doi: 10.3321/j.issn:1000-6915.2009.12.007
    刘新荣, 刘永权, 杨忠平, 等. 2015. 基于地质雷达的隧道综合超前预报技术[J]. 岩土工程学报, 37 (S2): 51-56. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2015S2012.htm
    马亢, 徐进, 张志龙, 等. 2009. 雪峰山公路隧道的超前预测预报研究[J]. 岩土力学, 30 (5): 1381-1386. doi: 10.3969/j.issn.1000-7598.2009.05.034
    石连松, 高文学, 周世生, 等. 2016. 隧道地震预报超前地质预报及其应用研究[J]. 兵工学报, 37 (S2): 128-132. https://www.cnki.com.cn/Article/CJFDTOTAL-BIGO2016S2021.htm
    舒森, 王树栋, 李广, 等. 2018. 瞬变电磁法指导复杂地质隧道超前水平钻探应用[J]. 物探与化探, 42 (6): 1311-1316. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201806029.htm
    苏茂鑫, 李术才, 薛翊国, 等. 2010. 隧道地质预报中的瞬变电磁视纵向电导解释方法研究[J]. 岩土工程学报, 32 (11): 1722-1726. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201011016.htm
    王生仁. 2021. 航空物探在藏东南某铁路隧道勘察中的应用研究[J]. 工程地质学报, 29 (2): 426-434. doi: 10.13544/j.cnki.jeg.2021-0123
    王志强, 马晓亮. 2019. 山区公路隧道施工地质预报综合技术研究[J]. 公路工程, 44 (1): 238-243. doi: 10.3969/j.issn.1674-0610.2019.01.043
    肖书安, 吴世林. 2004. 复杂地质条件下的隧道地质超前探测技术[J]. 工程地球物理学报, 1 (2): 159-165. doi: 10.3969/j.issn.1672-7940.2004.02.012
    杨继华, 闫长斌, 苗栋, 等. 2019. 双护盾TBM施工隧洞综合超前地质预报方法研究[J]. 工程地质学报, 27 (2): 250-259. doi: 10.13544/j.cnki.jeg.2018-044
    赵永贵, 蒋辉, 赵晓鹏. 2008. TSP203超前预报技术的缺陷与TST技术的应用[J]. 工程地球物理学报, 5 (3): 266-273. doi: 10.3969/j.issn.1672-7940.2008.03.002
    赵永贵, 刘浩, 孙宇, 等. 2003. 隧道地质超前预报研究进展[J]. 地球物理学进展, 18 (3): 460-464. doi: 10.3969/j.issn.1004-2903.2003.03.020
    周东, 刘宗辉, 吴恒, 等. 2015. 综合超前地质预报技术在岭脚隧道的应用研究[J]. 现代隧道技术, 52 (5): 171-177. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201505030.htm
    周捷, 席锦州. 2017. 综合超前地质预报在新铜锣山隧道中的运用[J]. 现代隧道技术, 54 (4): 207-212. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201704029.htm
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  88
  • HTML全文浏览量:  33
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-21
  • 修回日期:  2021-07-02
  • 刊出日期:  2022-04-25

目录

    /

    返回文章
    返回