岩溶隧道涌突水破坏模式分类及防突厚度研究

肖喜 赵晓彦 张巨峰 肖勇 莫培

肖喜, 赵晓彦, 张巨峰, 等. 2022. 岩溶隧道涌突水破坏模式分类及防突厚度研究[J]. 工程地质学报, 30(2): 459-474. doi: 10.13544/j.cnki.jeg.2021-0247
引用本文: 肖喜, 赵晓彦, 张巨峰, 等. 2022. 岩溶隧道涌突水破坏模式分类及防突厚度研究[J]. 工程地质学报, 30(2): 459-474. doi: 10.13544/j.cnki.jeg.2021-0247
Xiao Xi, Zhao Xiaoyan, Zhang Jufeng, et al. 2022.Classification of water inrush failure mode and rock thickness for preventing water inrush in karst tunnels[J]. Journal of Engineering Geology, 30(2): 459-474. doi: 10.13544/j.cnki.jeg.2021-0247
Citation: Xiao Xi, Zhao Xiaoyan, Zhang Jufeng, et al. 2022.Classification of water inrush failure mode and rock thickness for preventing water inrush in karst tunnels[J]. Journal of Engineering Geology, 30(2): 459-474. doi: 10.13544/j.cnki.jeg.2021-0247

岩溶隧道涌突水破坏模式分类及防突厚度研究

doi: 10.13544/j.cnki.jeg.2021-0247
基金项目: 

国家自然科学基金 41672295

四川省科技厅科技计划项目 2020YFG0303

详细信息
    作者简介:

    肖喜(1995-),男,硕士生,主要从事地质灾害与防治研究. E-mail:1373874772@qq.com

    通讯作者:

    赵晓彦(1977-),男,博士,教授,博士生导师,主要从事地质灾害与防治工程方面研究. E-mail: xyzhao2@swjtu.edu.cn

  • 中图分类号: U452.1+1

CLASSIFICATION OF WATER INRUSH FAILURE MODE AND ROCK THI-CKNESS FOR PREVENTING WATER INRUSH IN KARST TUNNELS

Funds: 

the National Natural Science Foundation of China 41672295

the Science and Technology Planning Program of Science & Technology Department of Sichuan Province 2020YFG0303

  • 摘要: 在岩溶山区进行隧址选择时,隧道与溶洞之间的防突岩体厚度是重要因素之一。在岩溶隧道修建过程中,若岩墙厚度保留过小,则岩溶水涌出造成安全事故、经济损失和工期延误。目前涌突水破坏分类较为笼统且大多忽略了隧道围岩的岩体结构对防突厚度的影响。本文首先从岩溶隧道围岩的结构类型、溶洞与隧道之间的相对大小和相对位置的角度进行涌突水破坏模式分类研究,再根据破坏模式抽象出梁模型、矩形或圆薄板模型、冲剪切柱模型、翼形裂纹张拉贯通模型、拉剪复合断裂破坏模型、顺层滑移模型等不同的力学模型,最后得出了相应破坏模式下防突厚度计算公式,以便为岩溶区隧道选线提供建议并为隧道修建过程中涌突水灾害预测提供参考。
  • 图  1  整体状结构  溶洞位于隧道顶部的Ⅰ型溶洞

    a. 隧道顶部的Ⅰ型溶洞示意图;b. 力学模型图

    Figure  1.  For monolithic structure of surrounding rock,the tunnel type Ⅰ cave model where the cave is located at the top

    图  2  整体状结构  溶洞位于隧道顶部的Ⅱ型溶洞

    a. 隧道顶部的Ⅱ型溶洞示意图;b. 力学模型图

    Figure  2.  For monolithic structure of surrounding rock,the tunnel type Ⅱ cave model where the cave is located at the top

    图  3  整体状结构  溶洞位于隧道顶部的Ⅲ型溶洞

    a. 隧道顶部的Ⅲ型溶洞示意图;b. 直接剪切破坏力学模型图;c. 冲切破坏力学模型图

    Figure  3.  For monolithic structure of surrounding rock,the tunnel type Ⅲ cave model where the cave is located at the top

    图  4  整体状结构  溶洞位于隧道侧部的Ⅰ型溶洞

    a. 隧道侧部的Ⅰ型溶洞示意图;b. 力学模型图

    Figure  4.  For monolithic structure of surrounding rock,the tunnel type Ⅰ cave model where the cave is located at the lateral side

    图  5  整体状结构  溶洞位于隧道侧部的Ⅱ型溶洞力学模型

    a. 隧道侧部的Ⅱ型溶洞示意图;b. 力学模型图

    Figure  5.  For monolithic structure of surrounding rock,the tunnel type Ⅱ cave model where the cave is located at the lateral side

    图  6  整体状结构  溶洞位于隧道侧部的Ⅲ型溶洞

    a. 隧道侧部的Ⅲ型溶洞示意图;b. 直接剪切破坏力学模型图;c. 冲切破坏力学模型图

    Figure  6.  For monolithic structure of surrounding rock,the tunnel type Ⅲ cave model where the cave is located at the lateral side

    图  7  整体状结构  溶洞位于掌子面前的Ⅰ型溶洞

    a. 掌子面前方的Ⅰ型溶洞示意图;b. 力学模型图

    Figure  7.  For monolithic structure of surrounding rock,the tunnel type Ⅰ cave model where the cave is located in the frontage of heading

    图  8  块状结构中断续节理分布图及力学模型

    a. 断续节理分布图;b. 力学模型

    Figure  8.  Distribution diagram and mechanical model of discontinuous joints in block structures

    图  9  翼形裂纹张拉贯通破坏分析图及示意图

    a. 翼形裂纹张拉贯通破坏分析图;b. 示意图

    Figure  9.  Analysis diagram and schematic diagram of airfoil crack through tension failure

    图  10  拉剪复合断裂破坏破坏分析图及示意图

    a. 拉剪复合断裂破坏分析图;b. 示意图

    Figure  10.  Failure analysis diagram and schematic diagram of tension-shear composite fracture

    图  11  层状结构  溶洞位于隧道顶部且结构面倾角大于β

    a. 隧道顶部且结构面倾角大于β示意图;b. 力学模型图

    Figure  11.  The surrounding rock of the tunnel is a layered structure,the karst cave is located at the top of the tunnel and the inclination of the structural plane is greater than β

    图  12  层状结构  溶洞位于隧道底部隧道顶部且结构面倾角大于β

    a. 隧道底部且结构面倾角大于β示意图;b. 力学模型图

    Figure  12.  The surrounding rock of the tunnel is a layered structure,the karst cave is located at the bottom of the tunnel and the inclination of the structural plane is greater than β

    图  13  层状结构  溶洞位于隧道侧部且结构面倾向隧道

    a. 隧道侧部且结构面上倾示意图;b. 力学模型图

    Figure  13.  The surrounding rock of the tunnel is a layered structure,the karst cave is located at the side of the tunnel and the dip angle of the structural plane is upward

    图  14  层状结构溶洞位于隧道侧部且结构面倾向溶洞

    a. 隧道侧部且结构面下倾示意图;b. 力学模型图

    Figure  14.  The surrounding rock of the tunnel is a layered structure,and the karst cave is located on the side of the tunnel and the structural surface is inclined downward

    图  15  碎裂结构及散体状结构  溶洞位于隧道顶部

    a. 隧道顶部示意图;b. 力学模型图

    Figure  15.  The surrounding rock of the tunnel is of cataclastic structure and granular structure,the karst cave is located at the top of the tunnel

    表  1  岩溶隧道涌突水破坏模式分类

    Table  1.   Classification of water inrush failure modes in karst tunnels

  • Chen F. 2018. The evolution law of water inrush of water-resistant rock mass with nonpersistent joints ahead of karst tunnel face[D]. Jiaozuo: Henan Polytechnic University.
    Chen M Q. 2019. Karst tunnel water inrush model and its precursor information[J]. Sichuan Building Materials, 45 (12): 86-87.
    Chen Z L. 2020. Study on the critical safety thickness of tunnel anti-burst slab in front of water-rich fault zone[D]. Beijing: Beijing Jiaotong University.
    Cheng J, Zhao S S. 2020. Fracture mechanics[M]. Beijing: Science Press.
    China Railway Eryuan Engineering Group Co., Ltd. 2016. Chongqing Dongquan Tunnel engineering geological survey report[R]. Chengdu: China Railway Eryuan Engineering Group Co., Ltd.
    Chu H D. 2017. Study on mechanism of water inrush and safety thickness of against-inrush layer in karst tunnel[D]. Wuhan: China University of Geosciences.
    Gu D Z. 1979. Fundamentals of rock engineering geomechanics[M]. Beijing: Science Press.
    Guo J Q, Chen J X, Chen F, et al. 2018. Water inrush criterion and catastrophe process of a karst tunnel face with non-persistent joints[J]. China Journal of Highway and Transport, 31 (10): 118-129.
    Guo J Q, Li H F, Chen F, et al. 2017. Theoretical analysis on water-resisting thickness of karst tunnel face[J]. Journal of Underground Space and Engineering, 13 (5): 1373-1380.
    Guo J Q, Qiao C S, Cao Q. 2010. Research on safe thickness of rock pillar between the tunnel and adjacent karst cave with pressurized water[J]. Modern Tunneling Technology, 47 (6): 10-16.
    Guo J Q, Qiao C S. 2012. Study on water-inrush mechanism and safe thickness of rock wall of karst tunnel face[J]. Journal of the China Railway Society, 34 (3): 105-111.
    Guo J Q. 2011. Study on against-inrush thickness and waterburst mechanism of karst tunnel[D]. Beijing: Beijing Jiaotong University.
    Han H Y, Wu Y W, Hei L, et al. 2012. Stability analysis of karst cave roof beneath highway subgrade[J]. Journal of Engineering Geology, 20 (6): 1078-1082.
    He Z Y, Guo J Q, Chen F, et al. 2017. Analysis of typical disaster-causing structure and water inrush mode of tunnel[J]. The Chinese Journal of Geological Hazards and Control, 28 (2): 97-107.
    Kang X B, Zhang Q, Xu M. 2006. A preliminary study of water intrusion in Zoumaling karst tunnel, Chongqing[J]. Journal of Engineering Geology, 14 (1): 68-71.
    Li J, Lu H, Xia Y P. 2014. Survey and research on estimation method of against-inrush safe thickness of rock strata in karst tunnels[J]. Tunnel Construction, 34 (9): 862-872.
    Li L P, Li S C, Zhang Q S. 2010. Study of mechanism of water inrush induced by hydraulic fracturing in karst tunnels[J]. Rock and Soil Mechanics, 31 (2): 523-528.
    Li L P, Lu W, Li S C, et al. 2010. Research status and developing trend analysis of the water inrush mechanism for underground engineering construction[J]. Journal of Shandong University(Engineering Science), 40 (3): 104-112.
    Li L P, Zhu Y Z, Zhou Z Q, et al. 2020. Calculation method of rock thickness for preventing water inrush in tunnels and their applicability evaluation[J]. Rock and Soil Mechanics, 41 (S1): 41-50.
    Liu T Y, Cao P, Fan X, et al. 2012. Splitting failure properties of fractured rock under high water pressure[J]. Journal of Central South University(Science and Technology), 43 (6): 2281-2287.
    Liu Y R. 2009. Rock mechanics[M]. Beijing: Chemical Industry Press.
    Meng F S, Wang Y C, Jiao Q L, et al. 2020. Analysis of the minimum safe thickness of water inrush in fault fracture zone based on the silo theory[J]. Journal of Harbin Institute of Technology, 52 (2): 89-95.
    Mo Y C. 2009. Stability research on high water pressure filled karst caves tunnel[D]. Chengdu: Southwest Jiaotong University.
    Shu J J, Deng Z D, Huang J Z. 2021. Study on minimum anti-outburst layer thickness of joint tunnel with forward water-rich karst cave at different angles[J]. Journal of Safety Science and Technology, 17 (2): 40-45.
    Sun J, Hu Y. 2015. Mechanical properties of clamped rectangular thin plate under uniform load and hydrostatic pressure[J]. Chinese Journal of Applied Mechanics, 32 (6): 908-914.
    Tian S M, Zhao Y, Shi S S, et al. 2019. The status, problems and countermeasures of typical disaster prevention and control methods during the construction period of Chinese railway tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 1 (2): 24-48.
    Wang Z W, Zhao H J, Ma F S, et al. 2019. Numerical study on tension-shear failure mechanism of heterogeneous coplanar intermittent jointed rock mass[J]. Journal of Engineering Geology, 27 (5): 989-999.
    Wu J L. 2016. Elasticity[M]. 3rd edition. Beijing: Higher Education Press.
    Wu J, Zhou Z F, Li M W, et al. 2019. Advance on the methods for predicting water inflow into tunnels[J]. Journal of Engineering Geology, 27 (4): 890-902.
    Wu Z S, Li S, Tu Y L, et al. 2020. Study on safety thickness theory of palm surface outburst prevention based on unified strength theory[J]. Chinese Journal of Underground Space and Engineering, 16 (6): 1705-1710.
    Xu Z L. 2006. Elasticity. Second volume[M]. Beijing: Higher Education Press.
    Yang H. 2010. Study on fracture mechanism of multi-fractured rock mass under water-rock interaction[D]. Changsha: Central South University.
    Yang Z H, Li Y X, Xu J S, et al. 2017. Upper bound stability analysis for confining rocks considering the circular existence of filled karst cave around tunnels[J]. Journal of Hunan University(Natural Sciences), 44 (5): 122-131.
    Zeng Y. 2015. Study on calculation method of safe thickness of karst tunnel rock plate and mechanism of water inrush disaster[D]. Chengdu: Southwest Petroleum University.
    Zhang H, Zhang X P, Zhang Q, et al. 2021. Study on meso-mechanism of crack coalescence in specimens containing double pre-existing flaws[J/OL]. Journal of Engineering Geology, 2021-06-22, https://doi.org/10.13544/j.cnki.jeg.2021-0071.
    Zhang J W, tan Y, Chen T, et al. 2017. Study on mechanism of batholite water inrush in lateral karst tunnel[J]. Journal of Highway and Transportation Research and Development, 34 (5): 109-115.
    Zhang Q. 2019. Research on safety thickness of waterproof-resistent slab of karst tunnels[D]. Beijing: Beijing Jiaotong University.
    Zhao H J, Dwayne T, Guo J, et al. 2019. Numerical study on fracture propagation and interaction using continuous-discontinuous failure method[J]. Journal of Engineering Geology, 27 (5): 933-945.
    Zhao M H, Zhang R, Hu B X, et al. 2009. Analysis of stability of cave roof under pile tip in karst area[J]. Journal of Highway and Transportation Research and Development, 26 (9): 13-16.
    陈帆. 2018. 岩溶隧道掌子面断续节理防突岩体突水演化规律[D]. 焦作: 河南理工大学.
    陈明庆. 2019. 岩溶隧道突水模式及其前兆信息[J]. 四川建材, 45 (12): 86-87. https://www.cnki.com.cn/Article/CJFDTOTAL-SCJZ201912043.htm
    陈泽龙. 2020. 富水断层带前隧道防突岩盘临界安全厚度研究[D]. 北京: 北京交通大学.
    程靳, 赵树山. 2020. 断裂力学[M]. 北京: 科学出版社.
    储汉东. 2017. 岩溶隧道突水机理及防突层安全厚度研究[D]. 武汉: 中国地质大学.
    谷德振. 1979. 岩体工程地质力学基础[M]. 北京: 科学出版社.
    郭佳奇, 陈建勋, 陈帆, 等. 2018. 岩溶隧道断续节理掌子面突水判据及灾变过程[J]. 中国公路学报, 31 (10): 118-129. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201810010.htm
    郭佳奇, 李宏飞, 陈帆, 等. 2017. 岩溶隧道掌子面防突厚度理论分析[J]. 地下空间与工程学报, 13 (5): 1373-1380. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201705031.htm
    郭佳奇, 乔春生, 曹茜. 2010. 侧部高压富水溶腔与隧道间岩柱安全厚度的研究[J]. 现代隧道技术, 47 (6): 10-16. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201006003.htm
    郭佳奇, 乔春生. 2012. 岩溶隧道掌子面突水机制及岩墙安全厚度研究[J]. 铁道学报, 34 (3): 105-111. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201203026.htm
    郭佳奇. 2011. 岩溶隧道防突厚度及突水机制研究[D]. 北京: 北京交通大学.
    韩红艳, 吴燕舞, 黑亮, 等. 2012. 岩溶路基溶洞顶板稳定性分析[J]. 工程地质学报, 20 (6): 1078-1082. doi: 10.3969/j.issn.1004-9665.2012.06.023
    贺振宇, 郭佳奇, 陈帆, 等. 2017. 隧道典型致灾构造及突水模式分析[J]. 中国地质灾害与防治学报, 28 (2): 97-107. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH201702013.htm
    康小兵, 张强, 许模. 2006. 重庆走马岭岩溶隧道涌水量初步研究[J]. 工程地质学报, 14 (1): 68-71. http://www.gcdz.org/article/id/9021
    李集, 卢浩, 夏沅谱. 2014. 岩溶隧道防突安全厚度研究综述及估算方法探讨[J]. 隧道建设, 34 (9): 862-872. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD201409010.htm
    李利平, 李术才, 张庆松. 2010a. 岩溶地区隧道裂隙水突出力学机制研究[J]. 岩土力学, 31 (2): 523-528. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201002036.htm
    李利平, 路为, 李术才, 等. 2010b. 地下工程突水机理及其研究最新进展[J]. 山东大学学报(工学版), 40 (3): 104-112. https://www.cnki.com.cn/Article/CJFDTOTAL-SDGY201003020.htm
    李利平, 朱宇泽, 周宗青, 等. 2020. 隧道突涌水灾害防突厚度计算方法及适用性评价[J]. 岩土力学, 41 (S1): 41-50. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2020S1006.htm
    刘涛影, 曹平, 范祥, 等. 2012. 高渗压条件下裂隙岩体的劈裂破坏特性[J]. 中南大学学报(自然科学版), 43 (6): 2281-2287. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201206038.htm
    刘佑荣. 2009. 岩体力学[M]. 北京. 化学工业出版社.
    孟凡树, 王迎超, 焦庆磊, 等. 2020. 断层破碎带突水最小安全厚度的筒仓理论分析[J]. 哈尔滨工业大学学报, 52 (2): 89-95. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX202002012.htm
    莫阳春. 2009. 高水压充填型岩溶隧道稳定性研究[D]. 成都: 西南交通大学.
    舒佳军, 邓正定, 黄晶柱. 2021. 前伏不同角度富水溶洞下节理隧道最小防突层厚度研究[J]. 中国安全生产科学技术, 17 (2): 40-45. https://www.cnki.com.cn/Article/CJFDTOTAL-LDBK202102007.htm
    孙建, 胡洋. 2015. 均布和静水压力作用下固支矩形薄板力学特性[J]. 应用力学学报, 32 (6): 908-914. https://www.cnki.com.cn/Article/CJFDTOTAL-YYLX201506004.htm
    田四明, 赵勇, 石少帅, 等. 2019. 中国铁路隧道建设期典型灾害防控方法现状、问题与对策[J]. 隧道与地下工程灾害防治, 1 (2): 24-48. https://www.cnki.com.cn/Article/CJFDTOTAL-SDZH201902004.htm
    王志文, 赵海军, 马凤山, 等. 2019. 非均质共面断续节理岩体拉伸剪切破裂机制研究[J]. 工程地质学报, 27 (5): 989-999. doi: 10.13544/j.cnki.jeg.2019170
    吴家龙. 2016. 弹性力学[M]. 第3版. 北京: 高等教育出版社.
    吴建, 周志芳, 李鸣威, 等. 2019. 隧洞涌水量预测计算方法研究进展[J]. 工程地质学报, 27 (4): 890-902. doi: 10.13544/j.cnki.jeg.2018-245
    吴祖松, 李松, 涂义亮, 等. 2020. 统一强度理论下掌子面防突安全厚度理论研究[J]. 地下空间与工程学报, 16 (6): 1705-1710. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE202006013.htm
    徐芝纶. 2006. 弹性力学. 下册[M]. 北京: 高等教育出版社.
    杨慧. 2010. 水-岩作用下多裂隙岩体断裂机制研究[D]. 长沙: 中南大学.
    杨子汉, 李永鑫, 许敬叔, 等. 2017. 圆形隧道环向存在隐伏充填溶腔时防突岩墙的上限稳定性分析[J]. 湖南大学学报(自然科学版), 44 (5): 122-131. https://www.cnki.com.cn/Article/CJFDTOTAL-HNDX201705015.htm
    曾艺. 2015. 岩溶隧道岩盘安全厚度计算方法及突水灾害发生机理研究[D]. 成都: 西南石油大学.
    张晗, 张晓平, 张旗, 等. 2021. 含双裂隙试样裂纹贯通细观机理研究[J/OL]. 工程地质学报, 2021-06-22, https://doi.org/10.13544/j.cnki.jeg.2021-0071.
    张军伟, 谭阳, 陈拓, 等. 2017. 岩溶隧道侧部岩盘突水机制研究[J]. 公路交通科技, 34 (5): 109-115. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201705015.htm
    张群. 2019. 岩溶隧道防突结构安全厚度研究[D]. 北京: 北京交通大学.
    赵海军, Dwayne tan nant, 郭捷, 等. 2019. 基于连续-非连续方法的裂隙破坏与相互作用研究[J]. 工程地质学报, 27 (5): 933-945. doi: 10.13544/j.cnki.jeg.2019161
    赵明华, 张锐, 胡柏学, 等. 2009. 岩溶区桩端下伏溶洞顶板稳定性分析研究[J]. 公路交通科技, 26 (9): 13-16. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK200909002.htm
    中铁二院工程集团有限责任公司. 2016. 重庆东泉隧道工程地质勘察报告[R]. 成都: 中铁二院工程集团有限责任公司.
  • 加载中
图(15) / 表(1)
计量
  • 文章访问数:  120
  • HTML全文浏览量:  29
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-07
  • 修回日期:  2021-09-06
  • 刊出日期:  2022-04-25

目录

    /

    返回文章
    返回