地下水渗流荧光单孔测速流场畸变系数的试验研究

蔡征龙 孟永东 李方方 缪蕊 田斌 田爽岑

蔡征龙, 孟永东, 李方方, 等. 2023. 地下水渗流荧光单孔测速流场畸变系数的试验研究[J]. 工程地质学报, 31(5): 1711-1718. doi: 10.13544/j.cnki.jeg.2021-0259
引用本文: 蔡征龙, 孟永东, 李方方, 等. 2023. 地下水渗流荧光单孔测速流场畸变系数的试验研究[J]. 工程地质学报, 31(5): 1711-1718. doi: 10.13544/j.cnki.jeg.2021-0259
Cai Zhenglong, Meng Yongdong, Li Fangfang, et al. 2023. Experimental study on distortion coefficient of single-hole fluorescence photoelectric method for groundwater seepage monitoring[J]. Journal of Engineering Geology, 31(5): 1711-1718. doi: 10.13544/j.cnki.jeg.2021-0259
Citation: Cai Zhenglong, Meng Yongdong, Li Fangfang, et al. 2023. Experimental study on distortion coefficient of single-hole fluorescence photoelectric method for groundwater seepage monitoring[J]. Journal of Engineering Geology, 31(5): 1711-1718. doi: 10.13544/j.cnki.jeg.2021-0259

地下水渗流荧光单孔测速流场畸变系数的试验研究

doi: 10.13544/j.cnki.jeg.2021-0259
基金项目: 

国家重点研发计划项目 2017YFC1501100

国家自然科学基金重点项目 51939004

详细信息
    作者简介:

    蔡征龙(1988-),男,博士,讲师,主要从事岩土工程稳定性与滑坡地质灾害治理方面的研究. E-mail: caizhenglo@163.com

    通讯作者:

    孟永东(1976-),男,博士,教授,主要从事岩土工程稳定性与滑坡地质灾害治理方面的研究. E-mail: mengydedit@126.com

  • 中图分类号: P641.2

EXPERIMENTAL STUDY ON DISTORTION COEFFICIENT OF SINGLE-HOLE FLUORESCENCE PHOTOELECTRIC METHOD FOR GROUNDWATER SEEPAGE MONITORING

Funds: 

the National Key Research and Development Plan 2017YFC1501100

National Natural Science Foundation of China 51939004

  • 摘要: 荧光光电法作为地下水单孔渗流监测的重要手段,而流场畸变系数合理取值是荧光单孔渗流监测的关键。为有效提高荧光光电法在地下水单孔渗流测速的准确率,开发设计了荧光单孔地下渗流模型的监测试验系统,分析研究不同渗流条件下的流场畸变系数。首先,依据单孔稀释模型推导了荧光光电法流场畸变系数的数学表达式;然后根据自制光电监测装置,开发设计了荧光单孔渗流监测系统的试验装置;最后通过研究荧光剂稀释过程中的光电强度变化来研究不同含水层、侧孔孔径和开孔率条件下流场畸变系数的变化规律,确定不同监测条件下流场畸变系数的取值范围。试验结果表明:流场畸变系数随渗透流速和滤管开孔率的增加而增加,随测孔孔径的增大而减小,且影响因子重要性为含水层>测孔孔径>开孔率。以上研究成果可为荧光单孔地下水渗流监测的实际工程应用提供有益借鉴。
  • 图  1  流线畸变现象(董海洲等,2000)

    Figure  1.  The distortion phenomenon of flow line (Dong et al.,2000)

    图  2  流速调节系统平面布置图

    Figure  2.  Layout plane of flow speed control system

    图  3  试验箱装置图

    Figure  3.  Diagram of test units

    图  4  滤管开孔情况

    Figure  4.  The porosity of filter tube

    图  5  清水试验时光电流随时间变化情况

    Figure  5.  The variation of photocurrent with time in clean water test

    图  6  不同开孔率条件下流场畸变系数随渗透流速的变化

    Figure  6.  The change law of distortion coefficient with seepage velocity under different open porosity

    图  7  不同渗透流速条件下流场畸变系数随测孔孔径的变化

    Figure  7.  The change law of distortion coefficient with drilling diameter under different seepage velocity

    图  8  不同测孔孔径条件下流场畸变系数随开孔率的变化

    Figure  8.  The change law of distortion coefficient with drilling diameter under different open porosity

    图  9  畸变系数变化云图

    a. 渗透流速 vs 测孔孔径; b. 开孔率 vs 测孔孔径

    Figure  9.  Cloud diagram of change of distortion coefficient: (a) seepage velocity vs. drilling diameter,(b)open porosity vs drilling diameter

  • Ahmed W H. 2011. Experimental investigation of air-oil slug flow using capacitance probes, hot-film anemometer, and image processing[J]. International Journal of Multiphase Flow, 37 (8): 876-887. doi: 10.1016/j.ijmultiphaseflow.2011.05.007
    Atkins J M, Moriarty B E, Zinn P J. 2017. Fluorescent monomers and tagged treatment polymers containing same for use in industrial water systems: US2017260076[P]. 2017-09-14.
    Battagliaa D, Birindellib F, Rinaldib M, et al. 2016. Fluorescent tracer tests for detection of dam leakages: The case of the Bumbuna dam-Sierra Leone[J]. Engineering Geology, 205 : 30-39. doi: 10.1016/j.enggeo.2016.02.010
    Binti Ghazali M F, Bin Adlan M N, Bin Samuding K, et al. 2015. Direct determination of groundwater direction and velocity using colloidal borescope at Jenderam Hilir, Selangor[J]. Applied Mechanics and Materials, 802 : 640-645. doi: 10.4028/www.scientific.net/AMM.802.640
    Cai Z L, Xu W Y, Shi C, et al. 2016. Study on the failure probability model of landslide with rainfall infiltration based on simplified Bishop integral method[J]. Journal of Sichuan University(Engineering Science Edition), 48 (3): 64-70.
    Chen J S, Wang Y, Zhao W B. 1999. The isotope tracer method for study on seepage flow in fissured rock[J]. Journal of Hydraulic Engineering, (11): 20-24. doi: 10.3321/j.issn:0559-9350.1999.11.004
    Dong H Z, Chen J S, Zhao W B. 2000. Discussion on α coeffictient of isotope single hole dilution method in the study of fissured rock mass seepage[J]. Site Investigation Science and Technology, (6): 3-7. doi: 10.3969/j.issn.1001-3946.2000.06.001
    Drost W, Klotz D, Koch A, et al. 1968. Point dilution methods of investigating ground water flow by means of radioisotopes[J]. Water Resources Research, 4 (1): 125-146. doi: 10.1029/WR004i001p00125
    Du T T, Li Z Q, Wang X M, et al. 2018. Model experiment study on erosion of loess slope due to rainfall[J]. Journal of Engineering Geology, 26 (3): 732-740.
    Fu Y M, Dong Y H, Xie Y Q, et al. 2022. Characterizing groundwater flow in fractured rock using fiber-optic distributed temperature sensing and numerical modeling[J]. Journal of Engineering Geology, 30(4): 1257-1265.
    Gao Z X, Xu J H, Wang J P, et al. 2003. Isotope technology and its application to measurement of groundwater velocity[J]. Journal of Hohai University(Natural Sciences), 31 (6): 655-658. doi: 10.3321/j.issn:1000-1980.2003.06.013
    Huang Y, Zhou L T, Zhou Z F. 2018. Equations for permeability variation of fractured rock mass under high water pressure[J]. Journal of Engineering Geology, 26 (6): 1433-1438.
    Kamaletdinov A Z. 1998. Mathematical modeling of processes in an electromagnetic velocity meter for liquids[J]. Measurement Techniques, 40 (8): 772-774.
    Klotz D, Moser H. 1969. Using radioactive isotopes in hydrology. Ⅶ. Measuring small filter velocities by the point dilution method[J]. Atomkernenergie, 14: 423-430.
    Kluska J, Ronewicz K, Kardas D. 2019. Thermal characteristics of single wood particle pyrolysis using particle image velocimetry[J]. International Journal of Thermal Sciences, 135 (1): 276-284.
    Lu W P. 2015. Infratest study on seepage velocity measurement of accumulation slope based on fluorescence detection method[D]. Yichang: China Three Gorges University.
    Meng Y D, Wan M, Tian B, et al. 2019. Study on the suitability of fluorescence photoelectric method in monitoring underground seepage of reservoir bank landslide[J]. Advanced Engineering Sciences, 51 (4): 30-36.
    Momii K, Jinno K, Hirano F. 1993. Laboratory studies on a new laser Doppler velocimeter system for horizontal groundwater velocity measurement in a borehole[J]. Water Resources Research, 29 (2): 283-291. doi: 10.1029/92WR01958
    Newhouse M W, Izbicki J A, Smith G A. 2005. Comparison of velocity-log data collected using impeller and electromagnetic flowmeters[J]. Ground Water, 143 (3): 434-438.
    Terra O, Hussein H M. 2019. Simple and accurate calibration system for laser doppler velocimeters[J]. Optik, 179 (2): 733-739.
    Wan M. 2017. Optimization design about the fluorescent monitor for geotechnical seepage velocity and the analysis of photocurrent characteristics[D]. Yichang: China Three Gorges University.
    Xu J G, Wang Z B. 2006. Fluorescence analysis method[M]. Beijing: Science Press.
    Yang L Z, Liu D, Liu B H, et al. 2019. Application of colloidal borescope in observing the velocity and direction of karst fissure water[J]. Geotechnical Investigation & Surveying, 47 (4): 35-39.
    Zhang X L, Meng Y D, Liang S S, et al. 2021. Research on automatic landslide monitoring data acquisition system based on internet to things technology[J]. Journal of Disaster Prevention and Mitigation Engineering, 41 (5): 1137-1144.
    Zhou W S. 2018. Influence on groundwater seepage system and stability of landslide under rainfall in Yaoshan village, Anxi county[J]. Journal of Engineering Geology, 28 (6): 1311-1318.
    Zhou Z F, Wang Z, Li Y B, et al. 2021. Calculating the permeability parameters of the staggered zone based on the nonlinear flow simulation of the high-pressure packer test[J]. Journal of Engineering Geology, 197-204.
    Zhu W X. 2015. Study on single pore generalized dilution model for fluorescence monitoring of seepage velocity of landslide[D]. Yichang: China Three Gorges University.
    蔡征龙, 徐卫亚, 石崇, 等. 2016. 基于简化Bishop积分法降雨滑坡失效概率模型研究[J]. 四川大学学报(工程科学版), 48 (3): 64-70. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH201603008.htm
    陈建生, 王媛, 赵维炳. 1999. 孔中同位素示踪方法研究裂隙岩体渗流[J]. 水利学报, (11): 20-24. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB199911003.htm
    董海洲, 陈建生, 赵维炳. 2000. 裂隙岩体渗流研究中同位素单孔稀释法α系数的讨论[J]. 勘察科学技术, (6): 3-7. https://www.cnki.com.cn/Article/CJFDTOTAL-KCKX200006000.htm
    杜婷婷, 李志清, 王晓明, 等. 2018. 黄土边坡降雨冲刷模型试验研究[J]. 工程地质学报, 26 (3): 732-740. doi: 10.13544/j.cnki.jeg.2017-252
    符韵梅, 董艳辉, 谢月清, 等. 2022. 基于分布式光纤温度示踪探测裂隙岩体地下水渗流特征[J]. 工程地质学报, 30(4): 1257-1265. doi: 10.13544/j.cnki.jeg.2020-200
    高正夏, 徐军海, 王建平, 等. 2003. 同位素技术测试地下水流速流向的原理及应用[J]. 河海大学学报(自然科学版), 31 (6): 655-658. https://www.cnki.com.cn/Article/CJFDTOTAL-HHDX200306013.htm
    黄勇, 周麟桐, 周志芳. 2018. 高水压力作用下裂隙岩体渗透性的变化研究[J]. 工程地质学报, 26 (6): 1433-1438. doi: 10.13544/j.cnki.jeg.2017-348
    卢伟平. 2015. 基于荧光检测法进行堆积体渗透流速测定的基础实验研究[D]. 宜昌: 三峡大学.
    孟永东, 万秒, 田斌, 等. 2019. 荧光光电法在库岸滑坡地下渗流监测中的适宜性研究[J]. 工程科学与技术, 51 (4): 30-36. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH201904005.htm
    万秒. 2017. 岩土渗透流速荧光监测仪探头设计及光电流特性分析[D]. 宜昌: 三峡大学.
    许军钩, 王尊本. 2006. 荧光分析法[M]. 北京: 科学出版社.
    杨丽芝, 刘迪, 刘本华, 等. 2019. 胶体探孔器在观测岩溶水流速流向中的应用[J]. 工程勘察, 47 (4): 35-39. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC201904006.htm
    张雪林, 孟永东, 梁诗顺, 等. 2021. 基于物联网技术的滑坡监测数据自动采集系统研究[J]. 防灾减灾工程学, 41 (5): 1137-1144. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK202105026.htm
    周志芳, 王哲, 李雅冰, 等. 2021. 基于钻孔高压压水试验非线性流模拟计算错动带渗透参数[J]. 工程地质学报, 29 (1): 197-204. doi: 10.13544/j.cnki.jeg.2020-626
    朱伟玺. 2015. 滑坡体渗透流速荧光监测的单孔广义稀释模型研究[D]. 宜昌: 三峡大学.
    卓万生. 2020. 雨强对安溪县尧山村滑坡地下水渗流系统及稳定性的影响研究[J]. 工程地质学报, 28 (6): 1311-1318. doi: 10.13544/j.cnki.jeg.2020-150
  • 加载中
图(9)
计量
  • 文章访问数:  41
  • HTML全文浏览量:  8
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-11
  • 修回日期:  2021-06-11
  • 刊出日期:  2023-10-25

目录

    /

    返回文章
    返回