REVIEW ON POTENTIAL ENGINEERING GEOLOGICAL ENVIRONMENT IMPACTS OF DEEP-SEA POLYMETALLIC NODULES MINING
-
摘要: 深海多金属结核广泛分布于全球海底,资源储量丰富、开采潜力巨大。自20世纪60年代,围绕深海多金属结核开采提出了连续链斗式、穿梭艇式、管道提升式等的采矿方式,目前研究中多以管道提升式研究为主。将赋存在海床沉积物表面的多金属结核开采出来必然会引起表层沉积物的扰动,从而影响海水化学性质及海洋生物活性。国内外学者围绕深海多金属结核开采,从结核的资源储量、矿区工程地质条件、开采技术、环境影响等方面展开了诸多研究。基于国内外大量文献资料,着重整理了深海多金属结核富集区CC区(东太平洋的克拉里昂—克里帕顿断裂带之间的海底区域)的研究进展。针对以管道提升式开采方式开采深海多金属结核产生的潜在工程地质环境影响得到以下几点认识:(1)结核开采过程中对表层沉积物产生扰动致使沉积物发生再悬浮,再悬浮颗粒浓度是影响海水化学性质、海洋生物活性的主要原因;(2)矿区表层沉积物的工程地质性质是深海多金属结核开采过程中生态环境影响程度的关键控制因素,其决定了结核开采时沉积物再悬浮的质量、空间分布特征;(3)目前多金属结核开采的环境影响评价多基于对生物群落的影响程度进行定性的评价,尚未有基于沉积物工程地质性质变化、再悬浮沉积物时空分布规律进行的环境影响评价,未来深海多金属结核开采环境工程地质影响定量评价系统有待建立。以上认识对于深入了解多金属结核开采研究现状、工程地质环境影响特征、监测环境影响内容有重要意义。Abstract: Deep-sea polymetallic nodules are widely distributed on the global seabed,with abundant resources and great potential for exploitation. Since 1960 s,the mining methods of continuous chain-fighting,shuttle-type,pipe lifting and so on have been proposed around deep-sea polymetallic nodule mining. The exploitation of polymetallic nodules on the surface of seabed sediments would inevitably cause the disturbance of surface sediments,which would affect the chemical properties and marine biological activities of seawater. Many scholars have studied the resources and reserves of the nodules,the engineering geological conditions,mining technology and environmental impact of the deep-sea polymetallic nodules. Based on a large number of domestic and foreign literature,the research progress of the CC zone(the seabed area between the Clarion-Crippaton fault zone in the eastern Pacific Ocean) is collated. The following points are recognized for the potential engineering geological environmental impact of deep-sea polymetallic nodules mining by pipeline lifting: (1)During the process of nodule mining,the surface sediments are disturbed and resuspended,and the concentration of resuspended particles is the main reason affecting the chemical properties and biological activities of seawater; (2)The engineering geological properties of surface sediments in mining area are the key control factors of the ecological environment impact degree in the process of deep-sea polymetallic nodule mining,which determines the quality and spatial distribution characteristics of sediment resuspension during nodule mining; (3)At present,the environmental impact assessment of polymetallic nodule mining is mostly based on the qualitative assessment of the degree of impact on the biological community. There is no environmental impact assessment based on the changes of sediment engineering geological properties and the temporal and spatial distribution of resuspended sediment. The quantitative assessment system of environmental engineering geological impact of deep-sea polymetallic nodule mining in the future needs to be established.
-
图 1 a为海底多金属结核形态及分布特征(引自(Hein et al., 2013)),b为多金属结核的CT扫描内部结构(引自(Hein et al., 2020))
Figure 1. Morphological characteristics of submarine polymetallic nodules(The left picture shows the polymetallic nodules(Hein et al., 2013) and the right picture shows the CT scan of the interior of the polymetallic nodules (Hein et al., 2020)
图 2 海底矿产资源在全球的分布(Miller et al., 2018)
Figure 2. Distribution of pacific polymetallic nodules mine development area(Miller et al., 2018)
图 3 a为德国勘探区某点处沉积物抗剪强度曲线(Oebius et al., 2001),b为韩国勘探区坐标某点处的抗剪强度曲线(Choi,2011)
Figure 3. The picture on the left is the shear strength curve of the sediment at a certain point in the exploration zone of Germany(Oebius et al., 2001), the picture on the right is the shear strength curve of the sediment at a certain point in the exploration zone of Korea(Choi, 2011)
图 4 多金属结核赋存区不同扰动区表层沉积物柱状样及CT扫描图像(Vonnahme et al., 2020)
Figure 4. Columnar samples and CT scanning images of surface sediments in different disturbed areas of polymetallic nodule occurrence area (Vonnahme et al., 2020)
图 5 深海多金属结核采矿系统示意图(Petterson et al., 2019)
Figure 5. Schematic diagram of deep sea polymetallic nodule mining system(Petterson et al., 2019))
图 6 英国西南部热带海山采矿扰动实验环境监测装置、监测结果及模型预测结果(改自Spearman,2020)
Figure 6. Experimental environmental monitoring device, monitoring results and model prediction results of mining disturbance on tropical seamounts in southwest England(modified from Spearman, 2020)
图 7 不同国家矿区扰动后沉积物孔隙度沿深度分布情况(改自Volz et al., 2020)
Figure 7. Distribution of sediment porosity along depth after disturbance in mining areas of different countries(modified from Volz et al., 2020)
表 1 中国勘探区西部表层15~20 cm处沉积物性质
Table 1. Properties of sediments 15~20 cm above the surface of western exploration zone in China
参数 含水率/% 孔隙比 干密度/g·cm-3 湿密度/g·cm-3 内摩擦角/(°) 黏聚力/kPa 抗剪强度/kPa 取值 85~135 3.15~3.93 0.53~0.66 1.18~1.49 3.9~5.7 4.2~6.2 4.2~6.6 表 2 1978年至今世界各国组织的多金属结核试采工作汇总
Table 2. Summary of trial mining of polymetallic nodules organized by countries around the world from 1978 to present
时间/年 组织者 试采地点 水深/m 采集方式 时长 采集量 来源 1978 Kennecott公司 实验室模拟 5000 管道提升 何宗玉,2003 1978 海洋采矿协会 大西洋 水-气力提升 22 h 500 t Sparenberg,2019; 1978 美国海洋管理公司 太平洋 5000 流体管道提升 800 t 周怀阳等,2003 1978 海洋矿业公司 CC区 5000 机械链齿挖掘 赵羿羽等,2016 1979 德国 红海 2200 191.1 h 1578 m3 1985 日本 小笠原春道群岛附近 集矿单体实验 周怀阳等,2003 1990 苏联 黑海 790 清水泵管道提升 72 t·h-1 1996和2003 印度和德国Siegen大学 印度洋 500 流体管道提升 姜秉国,2011 2018 中国 南海 500 采矿车单体实验 10 t·h-1 自然资源部官网,2018.9 表 3 世界各国组织的深海多金属结核开采环境影响试验研究汇总
Table 3. Summary of experimental research on environmental impacts of deep-sea polymetallic nodules organized by countries around the world
时间/年 地点 组织者 监测内容 来源 1970 布莱克高原 美国 环境基线及开采时物理化学及生物资料,如:悬浮颗粒浓度、水体化学成分、底栖生物性 周怀阳等,2003 1972 百慕大海隆区 美国 1972 CC区 日本、美国、法国 Amos et al., 1977 1972 CC区 德国 1975~1990 CC区水深1250 m处 美国 地质、生物和化学的环境基线,采矿对底栖生物的影响 Ozturgut et al., 1981; 周怀阳等,2003 1991~1998 CC区水深5000 m处 俄罗斯、日本、美国 分3个阶段监测采矿对地质、化学和生物基线的影响 黄朝钰等,1993; 王春生等,2003 1994~1996 日本近海 日本、美国 人造海底沉积物再悬浮、重沉积的监测 Trueblood,1992 1988~1998 秘鲁盆地 德国 沉积物的扩散分布 Sparenberg,2019 1995~2002 印度洋 印度 地质、化学和生物基线调查 Sharma,2015; 周怀阳,2008 2001 印度洋 印度 悬浮沉积物浓度的监测 Sharma,2013 2006 布亚特湾 印度尼西亚 尾矿排放的监测 Prisetiahadi et al., 2008 2014 太平洋西南部 新西兰 底栖生物的影响 Leduc et al., 2015 2016 英国西南部 英国 沉积物的扩散分布 Spearman et al., 2020 表 4 环境条件对采矿系统设计和运行的影响(改自Sharma,2011)
Table 4. Impact of environmental conditions on the design and operation of mining systems(modified from Sharma, 2011)
序号 深海多金属结核区工程地质环境条件 对采矿系统的影响 1 气候(风、降雨、气旋) 一年中不同季节开采时实际的天气状况 2 水文(波浪、洋流、温度、压力) 影响平台上的运行,包括矿石处理和采矿系统部署在浅层海水中立管系统的稳定性 3 地形(起伏、微地貌、坡度角) 采矿设备在海底的可操纵性和稳定性 4 结核特征(等级,大小,丰度,形态,分布模式) 采矿车的收集、压碎的设计,提升管道的设计,从有害物质中筛选海底结核的设计 5 沉积物性质(物质组成、结构特征、物理力学性质) 影响收集器设备的移动性和效率,使其能够正常运行而不会沉入(或卡在)沉积物中 表 5 OMI和OMA采矿系统试验时尾矿排放特征(王春生等, 2001a, 2001b)
Table 5. Discharge characteristics averaged over the mining period for mining tests conducted by OMI and OMA (Wang et al., 2001a, 2001b)
参数 OMI试验 OMA试验(气举系统) 液压提升系统 气举系统 一期 二期 开采速度/t·h-1 11 5 13±5 42±10 尾矿排放/L·s-1 459 101 95 80 颗粒浓度/g·L-1 12.66±9.56 6.82±5.61 2.79±1.59 8.84±3.07 尾矿温度/℃ 8.5 8.27±0.68 4.4-4.8 5-5.2 尾矿密度/g·cm-3 1.034 1.036 1.029 1.033 -
Achurra L E,Lacassie J P,Le Roux J P,et al. 2009. Manganese nodules in the Miocene Bahía Inglesa Formation, north-central Chile: Petrography, geochemistry, genesis and palaeoceanographic significance[J]. Sedimentary Geology, 217(1-4): 128-139. doi: 10.1016/j.sedgeo.2009.03.016 Ahnert A, Borowski C. 2000. Environmental risk assessment of anthropogenic activity in the deep-sea[J]. Journal of Aquatic Ecosystem Stress and Recovery, 7 (4): 299-315. doi: 10.1023/A:1009963912171 Amos A F, Roels O A. 1977. Environmental aspects of manganese nodule mining[J]. Marine Policy, 1 (2): 156-163. doi: 10.1016/0308-597X(77)90050-1 Ardron J A, Simon-Lledó E, Jones D O B, et al. 2019. Detecting the effects of deep-seabed nodule mining: simulations using megafaunal data from the clarion-clipperton zone[J]. Frontiers in Marine Science, 6: 1-13. doi: 10.3389/fmars.2019.00001 Balaram V. 2019. Rare earth elements: A review of applications, occurrence, exploration, analysis, recycling, and environmental impact[J]. Geoscience Frontiers, 10 (4): 1285-1303. doi: 10.1016/j.gsf.2018.12.005 Bau M, Koschinsky A, Dulski P, et al. 1996. Comparison of the partitioning behaviours of yttrium, rare earth elements, and titanium between hydrogenetic marine ferromanganese crusts and seawater[J]. Geochimica et Cosmochimica Acta, 60 (10): 1709-1725. doi: 10.1016/0016-7037(96)00063-4 Beaudoin Y, Bredbenner A, Elaine Baker, et al. 2014. Wealth in the Oceans: Deep sea mining on the horizon?[J]. Environmental Development, 12 : 50-61. doi: 10.1016/j.envdev.2014.07.001 Bornhold B D, Ren P, Prior D B. 1994. High-frequency turbidity currents in British Columbia fjords[J]. Geo-Marine Letters, 14 (4): 238-243. doi: 10.1007/BF01274059 Bourrel M, Thiele T, Currie D. 2018. The common of heritage of mankind as a means to assess and advance equity in deep sea mining[J]. Marine Policy, 95 : 311-316. doi: 10.1016/j.marpol.2016.07.017 Burd B, Macdonald R, Boyd J. 2000. Punctuated recovery of sediments and benthic infauna: A 19-year study of tailings deposition in a British Columbia fjord[J]. Marine Environmental Research, 49 (2): 145-175. doi: 10.1016/S0141-1136(99)00058-6 Cai S Q, Zhang W J, Wang S A. 2007. An advance in marine environment observation technology[J]. Journal of Tropical Oceanography, 26 (3): 76-81. http://en.cnki.com.cn/Article_en/CJFDTOTAL-RDHY200703013.htm Castilla J C, Nealler E. 1978. Marine environmental impact due to mining activities of El Salvador copper mine, Chile[J]. Marine Pollution Bulletin, 9 (3): 67-70. doi: 10.1016/0025-326X(78)90451-4 Chen Z T, Zhang J L, Xu M Z. 1995. Commercial deep sea mining of solid mineral resources: Fantastic or realistic[J]. Geological Science and Technology Information, (2): 81-84. http://en.cnki.com.cn/Article_en/CJFDTotal-DZKQ502.014.htm Choi J, Hong S, Chi S, et al. 2011. Probability distribution for the shear strength of seafloor sediment in the KR5 area for the development of manganese nodule miner[J]. Ocean Engineering, 38(17-18): 2033-2041. doi: 10.1016/j.oceaneng.2011.09.011 Christiansen B, Denda A, Christiansen S. 2019. Potential effects of deep seabed mining on pelagic and benthopelagic biota[J]. Marine Policy: 103442. http://www.sciencedirect.com/science/article/pii/S0308597X18306407 Cuyvers L, Berry W, Gjerde K, et al. 2018. Deep seabed mining: A rising environmental challenge[R]. Gland: International Union for Conservation of Nature and Nature Resources. Da Ros Z, Dell'Anno A, Morato T, et al. 2019. The deep sea: The new frontier for ecological restoration[J]. Marine Policy, 108: 103642. doi: 10.1016/j.marpol.2019.103642 Dai Y, Liu S J. 2013. Researches on deep ocean mining robots: status and development[J]. Robot, 35 (3): 363-375. doi: 10.3724/SP.J.1218.2013.00363 Ding L H, Gao Y Q, Jian Q, et al. 2003. The review of development of ocean polymetallic nodule collecting technique in China[J]. Mining Research and Development, 23 (4): 5-7, 27. http://en.cnki.com.cn/Article_en/CJFDTOTAL-KYYK200304002.htm Du L T, Lü X B. 2003. A review of the study on polymetallic nodules in ocean[J]. Geology and Resources, 12 (3): 185-187. http://en.cnki.com.cn/Article_en/CJFDTOTAL-GJSD200303008.htm Durden J M, Lallier L E, Murphy K, et al. 2018. Environmental impact assessment process for deep-sea mining in 'the Area'[J]. Marine Policy, 87 : 194-202. doi: 10.1016/j.marpol.2017.10.013 Durden J M, Murphy K, Jaeckel A, et al. 2017. A procedural framework for robust environmental management of deep-sea mining projects using a conceptual model[J]. Marine Policy, 84 : 193-201. doi: 10.1016/j.marpol.2017.07.002 Earney F C F. 2012. Marine mineral resources[M]. Routledge. Ellis D V. 2008. A review of some environmental issues affecting marine mining[J]. Marine Georesources & Geotechnology, 1 (19): 51-63. http://www.researchgate.net/publication/314814578_A_Review_of_Some_Environmental_Issues_Affecting_Marine_Mining Ellis J I, Clark M R, Rouse H L, et al. 2017. Environmental management frameworks for offshore mining: the New Zealand approach[J]. Marine Policy, 84 : 178-192. doi: 10.1016/j.marpol.2017.07.004 Fan N, Zhao W, Nian T K, et al. 2017. A new full-flow penetrometer for strength Test of submarine mud flow[J]. Journal of Shanghai Jiao Tong University, 51 (4): 456-461. http://www.researchgate.net/publication/318587638_A_New_Full-Flow_Penetrometer_for_Strength_Test_of_Submarine_Mud_Flow Fang Y X, Bao G S, Jin X L. 2000. Prospects for the development and utilization of deep sea resources in the 21st century[J]. Marine Science Bulletin, 19 (5): 73-78. http://en.cnki.com.cn/Article_en/CJFDTOTAL-HUTB200005010.htm Fan Z H, Jia Y G, et al. 2020. Research on in-situ observation system of seabed boundary layer based on self-potential measurement[C]//IOP Conference Series Earth and Environmental Science, 570: 062035. Franks D M, Boger D V, Côte C M, et al. 2011. Sustainable development principles for the disposal of mining and mineral processing wastes[J]. Resources Policy, 36 (2): 114-122. doi: 10.1016/j.resourpol.2010.12.001 Glasby G P. 2000. Lessons learned from deep-sea mining[J]. Science, (289): 551-553. http://www.ganino.com/games/Science/science%20magazine%201999-2000/root/data/Science%201999-2000/pdf/2000_v289_n5479/p5479_0551.pdf Gollner S, Kaiser S, Menzel L, et al. 2017. Resilience of benthic deep-sea fauna to mining activities[J]. Marine Environmental Research, 129 : 76-101. doi: 10.1016/j.marenvres.2017.04.010 Guo L. 2016. Development and application of in-situ integrated observation system into bottom boundary layer[D]. Qingdao: Ocean University of China. Haffert L, Haeckel M, de Stigter H, et al. 2020. Assessing the temporal scale of deep-sea mining impacts on sediment biogeochemistry[J]. Biogeosciences, 17 (10): 2767-2789. doi: 10.5194/bg-17-2767-2020 He Z Y, Lin J G, Yang B H, et al. 2016. The progress and viewpoints on the development of the regulations for mineral exploitation in the area[J]. Pacific Journal, 24 (10): 9-17. http://search.cnki.net/down/default.aspx?filename=TPYX201610002&dbcode=CJFD&year=2016&dflag=pdfdown He Z Y. 2003. Environmental impact of deep sea mining[J]. Ocean Minerals, (1): 61-65. http://www.researchgate.net/publication/254538415_The_Environmental_Impact_of_Deep_Sea_Mining Hein J R, Koschinsky A, Kuhn T. 2020. Deep-ocean polymetallic nodules as a resource for critical materials[J]. Nature Reviews Earth & Environment, 1 (3): 158-169. Hein J R, Mizell K, Koschinsky A, et al. 2013. Deep-ocean mineral deposits as a source of critical metals for high-and green-technology applications: Comparison with land-based resources[J]. Ore Geology Reviews, 51 : 1-14. doi: 10.1016/j.oregeorev.2012.12.001 Hirota J. 1981. Potential effects of deep-sea minerals mining on macrozooplankton in the north equatorial pacific[J]. Marine Mining, 3 (1): 19-57. http://www.researchgate.net/publication/282371524_POTENTIAL_EFFECTS_OF_DEEP-SEA_MINERALS_MINING_ON_MACROZOOPLANKTON_IN_THE_NORTH_EQUATORIAL_PACIFIC Huang C Y, Sheng G N. 1993. A survey of research on the development of submarine manganese nodules[J]. China's Manganese Industry, (4): 44-45. Jaeckel A. 2016. Deep seabed mining and adaptive management: The procedural challenges for the International Seabed Authority[J]. Marine Policy, 70 : 205-211. doi: 10.1016/j.marpol.2016.03.008 Jia Y G, Tian Z C, Zhang B W, et al. 2018. Deep sea bottom boundary layer dynamic observation device and method: China, 201810276805.7. [P]. 2018-03-30. Jia Y G, Wang Z H, Liu X L, et al. 2017. The research progress of field investigation and in-situ observation methods for submarine landslide[J]. Periodical of Ocean University of China, 47 (10): 61-72. http://en.cnki.com.cn/Article_en/CJFDTotal-QDHY201710010.htm Jiang B G. 2011. Study on industrialization development of deep-sea strategic resoruces explotiation in China—Exploitation of deep-sea mineral and biological resources as cases[D]. Qingdao: Ocean University of China. Jones D O B, Ardron J A, Colaço A, et al. 2018. Environmental considerations for impact and preservation reference zones for deep-sea polymetallic nodule mining[J]. Marine Policy, doi: 10.1016/j.marpol.2018.10.025. Kang Y, Liu S, Zou W, et al. 2019. Design and analysis of an innovative deep-sea lifting motor pump[J]. Applied Ocean Research, 82 : 22-31. doi: 10.1016/j.apor.2018.10.018 Kim R E, Anton D. 2014. The application of the precautionary and adaptive management approaches in the seabed mining context: Trans-Tasman Resources Ltd Marine Consent Decision Under New Zealand's Exclusive Economic Zone and Continental Shelf(Environmental Effects) Act 2012[J]. Social Science Electronic Publishing, 30 (1): 175-188. http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2515186 Kim S, Cho S, Lim W, et al. 2019. Probability distribution for size and mass of a nodule in the KR5 area for the development of a manganese nodule miner[J]. Ocean Engineering, 171 : 131-138. doi: 10.1016/j.oceaneng.2018.10.041 Lallier L E, Maes F. 2016. Environmental impact assessment procedure for deep seabed mining in the area: Independent expert review and public participation[J]. Marine Policy, 70 : 212-219. doi: 10.1016/j.marpol.2016.03.007 Le Meur P, Arndt N, Christmann P, et al. 2018. Deep-sea mining prospects in French Polynesia: Governance and the politics of time[J]. Marine Policy, 95 : 380-387. doi: 10.1016/j.marpol.2016.07.020 Leduc D, Pilditch C A. 2013. Effect of a physical disturbance event on deep-sea nematode community structure and ecosystem function[J]. Journal of Experimental Marine Biology and Ecology, 440 : 35-41. doi: 10.1016/j.jembe.2012.11.015 Leduc D, Rowden A A, Torres L G, et al. 2015. Distribution of macro-infaunal communities in phosphorite nodule deposits on Chatham Rise, Southwest Pacific: Implications for management of seabed mining[J]. Deep Sea Research Part I: Oceanographic Research Papers, 99 : 105-118. doi: 10.1016/j.dsr.2015.01.006 Levin L A, Mengerink K, Gjerde K M, et al. 2016. Defining"serious harm" to the marine environment in the context of deep-seabed mining[J]. Marine Policy, 74 : 245-259. doi: 10.1016/j.marpol.2016.09.032 Li X, Xu Y, Yang L, et al. 2017. Marine environmental monitoring in major countries of the world and its enlightenment to China[J]. Marine Environmental Science, 36 (3): 474-480. http://search.cnki.net/down/default.aspx?filename=HYHJ201703024&dbcode=CJFD&year=2017&dflag=pdfdown Li Z H, Jia Y G, Bo J S. 2019. Review of academic annual symposium of engineering investigation specialized committee of the Chinese Institute of Seismology in 2019 and the 4th symposium on development strategies of marine engineering geology[J]. Journal of Engineering Geology, 27 (6): 1483-1487. http://en.cnki.com.cn/Article_en/CJFDTotal-GCDZ201906031.htm Liang D H, He G W, Zhu K C. 2014. The small-scale distributing characteristics of the polymetallic nodules in the West China Example Area[J]. Acta Oceanologica Sinica, 36 (4): 33-39. http://en.cnki.com.cn/Article_en/ http://search.cnki.net/down/default.aspx?filename=SEAC201404004&dbcode=CJFD&year=2014&dflag=pdfdown Lin T H, Chen C, Watanabe H K, et al. 2019. Using soundscapes to assess deep-sea benthic ecosystems[J]. Trends in Ecology & Evolution, 12 (34): 1066-1069. http://www.sciencedirect.com/science/article/pii/S0169534719302848 Liu S J, Liu C, Dai Y. 2014. Status and progress on researches and developments of deep ocean mining equipments[J]. Journal of Mechanical Engineering, 50 (2): 8-18. doi: 10.3901/JME.2014.02.008 Liu X L, Lu Y, Wang Y, et al. 2020. Exploration of marine resources and marine engineering geology: Summary on the 2nd international symposium on marine engineering geology(ISMEG 2019)[J]. Journal of Engineering Geology, 28 (1): 169-177. Liu X L, Zhu C Q, Wang D, et al. 2017. Progress in marine engineering gology: summary of the international symposium of marine engineering geology[J]. Journal of Engineering Geology, 25 (3): 886-891. http://en.cnki.com.cn/Article_en/CJFDTotal-GCDZ201703038.htm Lodge M, Johnson D, Le Gurun G, et al. 2014. Seabed mining: International Seabed Authority environmental management plan for the Clarion-Clipperton Zone. A partnership approach[J]. Marine Policy, 49 : 66-72. doi: 10.1016/j.marpol.2014.04.006 Lu Y, Chu F Y, Dong Y H, et al. 2020. Formation of nodules on continental slopes in the northeast of the South China Sea and its implications for cold seep[J]. Journal of Marine Science, 38 (2): 16-25. Lü W Z. 2008. Geology of deposits in the Chinese Pioneering Area of Pacific Polymetallic Nodules[M]. Beijing: Ocean Press. Ma W, Schott D, van Rhee C. 2019. Numerical calculations of environmental impacts for deep sea mining activities[J]. Science of The Total Environment, 652 : 996-1012. doi: 10.1016/j.scitotenv.2018.10.267 Mero J L. 1965. The mineral resources of the sea[M]. Elsevier. Mestre N C, Rocha T L, Canals M, et al. 2017. Environmental hazard assessment of a marine mine tailings deposit site and potential implications for deep-sea mining[J]. Environmental Pollution, 228 : 169-178. doi: 10.1016/j.envpol.2017.05.027 Miller K A, Thompson K F, Johnston P, et al. 2018. An overview of seabed mining including the current state of development, environmental impacts, and knowledge gaps[J]. Frontiers in Marine Science, 4: 418. doi: 10.3389/fmars.2017.00418 Montserrat F, Guilhon M, Corrêa P V F, et al. 2019. Deep-sea mining on the Rio Grande Rise(Southwestern Atlantic): A review on environmental baseline, ecosystem services and potential impacts[J]. Deep Sea Research Part I: Oceanographic Research Papers, 145 : 31-58. doi: 10.1016/j.dsr.2018.12.007 Ni J Y, Zhou H Y, Peng X T, et al. 2002. The benthic environmental features in the China Pioneer Area, northeastern Pacific Ocean[J]. Marine Geology & Quaternary Geology, 22 (1): 43-47. http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYDZ200201007.htm Oebius H U, Becker H J, Rolinski S, et al. 2001. Parametrization and evaluation of marine environmental impacts produced by deep-sea manganese nodule mining[J]. Deep-Sea Research Part Ⅱ, 48 : 3453-3467. doi: 10.1016/S0967-0645(01)00052-2 Ozturgut E, Lavelle J W, Burns R E. 1981. Impacts of manganese nodule mining on the environment: Results from pilot-scale mining tests in the north equatorial pacific[J]. Elsevier Oceanography Series, (27): 437-474. http://www.sciencedirect.com/science/article/pii/S042298940871420X Peng S F. 2020. Design and implementation of measurement and control system of in-situ geomechanics measurement device for seabed sediment[J]. Mining and Metallurgical Engineering, 40 (6): 26-29. Petersen S, Krätschell A, Augustin N, et al. 2016. News from the seabed-Geological characteristics and resource potential of deep-sea mineral resources[J]. Marine Policy, 70 : 175-187. doi: 10.1016/j.marpol.2016.03.012 Petterson M G, Tawake A. 2019. The Cook Islands(South Pacific) experience in governance of seabed manganese nodule mining[J]. Ocean & Coastal Management, 167 : 271-287. http://www.sciencedirect.com/science/article/pii/S096456911830334X Prisetiahadi K, Yanagi T. 2008. Seasonal variation in the behavior of tailing wastes in Buyat Bay, Indonesia[J]. Marine Pollution Bulletin, 57(1-5): 170-181. doi: 10.1016/j.marpolbul.2007.10.034 Qi H S, Wang Y. 2017. Numerical simulation on the disturbance of polymetallic nodule mining to marine sediments[J]. Journal of Zhejiang Sci-Tech University(Natural Science), 37 (4): 533-537. http://en.cnki.com.cn/Article_en/CJFDTotal-ZJSG201704011.htm Qiu D Y, Fei X J, Ma Y. 1997. Effects of exploitation of oceanics polymetallic nodule upon environment[J]. China's Manganese Industry, 15 (2): 46-49. http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGMM702.010.htm Ramirez M, Massolo S, Frache R, et al. 2005. Metal speciation and environmental impact on sandy beaches due to El Salvador copper mine, Chile[J]. Marine Pollution Bulletin, 50 (1): 62-72. doi: 10.1016/j.marpolbul.2004.08.010 Ramirez-Llodra E, Trannum H C, Evenset A, et al. 2015. Submarine and deep-sea mine tailing placements: A review of current practices, environmental issues, natural analogs and knowledge gaps in Norway and internationally[J]. Marine Pollution Bulletin, 97(1-2): 13-35. doi: 10.1016/j.marpolbul.2015.05.062 Sanae, Chiba, Hideaki, et al. 2018. Human footprint in the abyss: 30 year records of deep-sea plastic debris-ScienceDirect[J]. Marine Policy, 96 : 204-212. doi: 10.1016/j.marpol.2018.03.022 Sharma R. 2011. Deep-Sea mining: economic, technical, technological, and environmental considerations for sustainable development[J]. Marine Technology Society Journal, 45 (5): 28-41. doi: 10.4031/MTSJ.45.5.2 Sharma R, Sankar S J, Samanta S, et al. 2010. Image analysis of seafloor photographs for estimation of deep-sea minerals[J]. Geo-Marine Letters, 30 (6): 617-626. doi: 10.1007/s00367-010-0205-z Sharma R. 2013. Deep-Sea impact experiments and their future requirements[J]. Marine Georesources & Geotechnology, 23 (4): 331-338. Sharma R. 2015. Environmental issues of deep-sea mining[J]. Procedia Earth and Planetary Science, 11 : 204-211. doi: 10.1016/j.proeps.2015.06.026 Shi X F, Fu Y Z, Li B, et al. 2021. Research on deep-sea minerals in China: progress and discovery(2011-2020)[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 42 (2): 305-318. Simon-Lledó E, Bett B J, Huvenne V A I, et al. 2019. Megafaunal variation in the abyssal landscape of the Clarion Clipperton Zone[J]. Progress in Oceanography, 170 : 119-133. doi: 10.1016/j.pocean.2018.11.003 Smit M G D, Holthaus K I E, Trannum H C, et al. 2008. Species sensitivity distributions for suspended clays, sediment burial, and grain size change in the marine environment[J]. Environmental Toxicology & Chemistry, 27 (4): 1006-1012. http://www.onacademic.com/detail/journal_1000034852986710_0b8a.html Song L Q. 1999. Geotechnical properties of oceanic polymetallic nodule sediments[J]. Acta Oceanologica Sinica, 21 (6): 47-54. http://epub.cnki.net/grid2008/docdown/docdownload.aspx?filename=SEAC199906005&dbcode=CJFD&year=1999&dflag=pdfdown Sparenberg O. 2019. A historical perspective on deep-sea mining for manganese nodules, 1965-2019[J]. The Extractive Industries and Society, 6 (3): 842-854. doi: 10.1016/j.exis.2019.04.001 Spearman J, Taylor J, Crossouard N, et al. 2020. Measurement and modelling of deep sea sediment plumes and implications for deep sea mining[J]. Scientific Reports, doi: 10.1038/s41598-020-61837-y. Sui L R, Zhou H Y, Shen H T. 1995. Progress in the research on resources of marine multimeal tuberculum in China[J]. Science and Technology Review(Beijing), 29-31. http://en.cnki.com.cn/Article_en/CJFDTotal-KJDB510.011.htm Thiel H, Weikert H, Karbe L. 2014. Risk assessment for mining metalliferous muds in the deep red sea author(s): hjalmar thiel, horst weikert and ludwig karbe source: ambio[J]. Royal Swedish Academy of Sciences, 15(1986): 34-41. Trueblood D D, Ozturgut E. 1997. The benthic impact experiment: a study of the ecological impacts of deep seabed mining on abyssal benthic communities[C]//The Seventh International Offshore and Polar Engineering Conference. Honolulu, Hawaii, USA: [s. n. ]. Trueblood D D. 1992. US cruise report for BIE Ⅱ (April 10~May 29, 1992)[R]. Washington, D C: NOAA. Volz J B, Haffert L, Haeckel M, et al. 2020. Impact of small-scale disturbances on geochemical conditions, biogeochemical processes and element, fluxes in surface sediments of the eastern Clarion-Clipperton Zone, Pacific Ocean[J]. Biogeosciences, 7(4): 1113-1131. http://www.researchgate.net/publication/335281994_Impact_of_small-scale_disturbances_on_geochemical_conditions_biogeochemical_processes_and_element_fluxes_in_surface_sediments_of_the_eastern_Clarion-Clipperton_Zone_Pacific_Ocean Vonnahme T R, Molari M, Janssen F, et al. 2020. Effects of a deep-sea mining experiment on seafloor microbial communities and functions after 26 years[J]. Science Advances, 6 (18): 1-14. http://www.researchgate.net/publication/341029843_Effects_of_a_deep-sea_mining_experiment_on_seafloor_microbial_communities_and_functions_after_26_years Wang C S, Zhou H Y, Ni J Y. 2003. Studies on the environmental effects of deep-sea mining: progress, problems and prospects[J]. Donghai Marine Science, 21 (1): 55-64. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DHHY200301008.htm Wang C S, Zhou H Y. 2001a. Assessment on the potential impacts of deep-sea mining on the marine ecosystem Ⅰ. Epipelagic ecosystem[J]. Marine Environmental Science, 20 (1): 1-6. http://en.cnki.com.cn/Article_en/CJFDTotal-HYHJ200101000.htm Wang C S, Zhou H Y. 2001b. Assessment of potential impacts of deep-sea mining on marine ecosystem Ⅱ. Benthic ecosystem[J]. Marine Environmental Science, 20 (1): 32-37. http://search.cnki.net/down/default.aspx?filename=HYHJ200102006&dbcode=CJFD&year=2001&dflag=pdfdown Wang S R, Yang N, Wang G M. 2000. Strength characteristics of deep sea deposits in China's mining region in the Pacific Ocean's C—C zone[J]. Mining and Metallurgical Engineering, 20 (3): 21-24. http://en.cnki.com.cn/Article_en/CJFDTOTAL-KYGC200003008.htm Wu B, Cheng X M, Tian C, et al. 2016. Research advance on hydrodynamic techniques in deep sea mining system[J]. Shipbuilding of China, 57 (3): 204-214. http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGZC201603023.htm Wu S G, Zhang H Y, Jiao D F, et al. 2020. Prospect analysis of submarine mineral resources exploitation in South China Sea[J]. Science Technology and Engineering, 20 (31): 12673-12682. http://www.researchgate.net/publication/347136382_Prospect_Analysis_of_Submarine_Mineral_Resources_Exploitation_in_South_China_Sea Yu M, Deng X G, Yao H Q, et al. 2018. The progress in the investigation and study of global deep-sea polumetallic nodules[J]. Geology in China, 45 (1): 29-38. http://en.cnki.com.cn/Article_en/CJFDTotal-DIZI201801004.htm Yu Y J, Duan L C, Wang H F, et al. 2016. Preliminary study on physico-mechanical properties of deep-sea sediments from the western pacific[J]. Mining and Metallurgical Engineering, 36 (5): 1-4. http://en.cnki.com.cn/Article_en/CJFDTOTAL-KYGC201605001.htm Yuan Y, Wei H, Zhao L, et al. 2009. Implications of intermittent turbulent bursts for sediment resuspension in a coastal bottom boundary layer: A field study in the western Yellow Sea, China[J]. Marine Geology, 263(1-4): 87-96. doi: 10.1016/j.margeo.2009.03.023 Zhang F Y, Zhang W Y, Feng X W. 2011. Distribution characteristics of abundance and grade of polymetallic nodules in the CC area of the Pacific Ocean[J]. Acta Mineralogica Sinic, (S): 711. Zhang F Y, Zhang W Y, He G W, et al. 2001. Ocean polymetallic nodule resource evaluation principle and mining area delineation method[M]. Beijing: Ocean Press. Zhang H, Jia Y G, Liu X L, et al. 2019. Progress in in-situ measurement of sediment mechanical properties for full ocean deepth[J]. Marine Geology Frontier, 35 (2): 1-9. http://en.cnki.com.cn/Article_en/CJFDTotal-HYDT201902001.htm Zhang Y X, Lan H X, Li L P, et al. 2019. Combining statistical model and physical model for refined assessment of geological disaster—A case study of Longshan community in Fujian Province[J]. Journal of Engineering Geology, 27 (3): 608-622. http://en.cnki.com.cn/Article_en/CJFDTotal-GCDZ201903020.htm Zhao H, Wang Y, Han F, et al. 2018. Acoustic pressure simulation and experiment design in seafloor mining environment[J]. Journal of Central South University, 25 (6): 1409-1417. doi: 10.1007/s11771-018-3836-2 Zhao Y Y, Zeng X G, Lang S Y. 2016. Review and prospect of deep sea mining system[J]. Marine Equipment/Materials & Marketing, (6): 39-41. Zhao Y Y, Zeng X G, Lang S Y. 2017. The environmental impact of deep sea mining cannot be ignored[J]. Marine Equipment/Materials & Marketing, (1): 57-59. Zhou H Y, Wang C S, Ni J Y. 2003. Existing experimental methods and results evaluation of the environmental impact of deep sea mining[M]. Beijing: Ocean Press. Zhou H Y. 2008. Geological model of polymentallic nodule deposits based on the CCZ[J]. Geochimica, 37 (4): 373-381. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX200804010.htm Zhou H Y. 2015. Metallogenetic mystery of deep sea ferromanganese nodules[J]. Chinese Journal of Nature, 37 (6): 397-404. http://en.cnki.com.cn/Article_en/CJFDTotal-ZRZZ201506002.htm Zhu C Q, Zhou L, Zhang H, et al. 2017. Preliminary study of physical and mechanical properties of surface sediment in northern south China sea[J]. Journal of Engineering Geology, 25 (6): 1566-1573. http://www.researchgate.net/publication/334273055_Preliminary_Study_Of_Physical_And_Mechanical_Properties_Of_Surface_Sediment_In_Northern_South_China_Sea 蔡树群, 张文静, 王盛安. 2007. 海洋环境观测技术研究进展[J]. 热带海洋学报, 26 (3): 76-81. doi: 10.3969/j.issn.1009-5470.2007.03.014 陈宗团, 张吉林, 徐脉直. 1995. 深海固体矿产商业化采矿: 幻想与现实[J]. 地质科技情报, (2): 81-84. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ502.014.htm 戴瑜, 刘少军. 2013. 深海采矿机器人研究现状与发展[J]. 机器人, 35 (3): 363-375. https://www.cnki.com.cn/Article/CJFDTOTAL-JQRR201303017.htm 丁六怀, 高宇清, 简曲, 等. 2003. 中国大洋多金属结核集矿技术研究综述[J]. 矿业研究与开发, 23 (4): 5-7, 27. doi: 10.3969/j.issn.1005-2763.2003.04.002 杜灵通, 吕新彪. 2003. 大洋多金属结核研究概况[J]. 地质与资源, 12 (3): 185-187. doi: 10.3969/j.issn.1671-1947.2003.03.009 范宁, 赵维, 年廷凯, 等. 2017. 一种测试海底泥流强度的新型全流动贯入仪[J]. 上海交通大学学报, 51 (4): 456-461. https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT201704012.htm 方银霞, 包更生, 金翔龙. 2000.21世纪深海资源开发利用的展望[J]. 海洋通报, 19 (5): 73-78. doi: 10.3969/j.issn.1001-6392.2000.05.011 郭磊. 2016. 海底边界层原位综合观测系统开发与应用研究[D]. 青岛: 中国海洋大学. 何宗玉, 林景高, 杨保华, 等. 2016. 国际海底区域采矿规章制定的进展与主张[J]. 太平洋学报, 24 (10): 9-17. https://www.cnki.com.cn/Article/CJFDTOTAL-TPYX201610002.htm 何宗玉. 2003. 深海采矿的环境影响[J]. 大洋矿产, (1): 61-65. https://www.cnki.com.cn/Article/CJFDTOTAL-KTGC201902005.htm 黄朝钰, 盛桂浓. 1993. 日本开发海底锰结核的研究概况[J]. 中国锰业, (4): 44-45. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMM199304013.htm 贾永刚, 田壮才, 张博文, 等. 2018. 深海海底边界层动态观测装置和方法: 中国, 201810276805.7. [P]. 2018-03-30. 贾永刚, 王振豪, 刘晓磊, 等. 2017. 海底滑坡现场调查及原位观测方法研究进展[J]. 中国海洋大学学报(自然科学版), 47 (10): 61-72. https://www.cnki.com.cn/Article/CJFDTOTAL-QDHY201710010.htm 姜秉国. 2011. 中国深海战略性资源开发产业化发展研究——以深海矿产和生物资源开发为例[D]. 青岛: 中国海洋大学. 李潇, 许艳, 杨璐, 等. 2017. 世界主要国家海洋环境监测情况及对我国的启示[J]. 海洋环境科学, 36 (3): 474-480. https://www.cnki.com.cn/Article/CJFDTOTAL-HYHJ201703024.htm 李正辉, 贾永刚, 薄景山. 2019. 中国地震学会工程勘察专业委员会2019学术年会暨第四届海洋工程地质发展战略研讨会回顾[J]. 工程地质学报, 27 (6): 1483-1487. doi: 10.13544/j.cnki.jeg.2019-380 梁东红, 何高文, 朱克超. 2014. 中国多金属结核西示范区的结核小尺度分布特征[J]. 海洋学报, 36 (4): 33-39. https://www.cnki.com.cn/Article/CJFDTOTAL-SEAC201404004.htm 刘少军, 刘畅, 戴瑜. 2014. 深海采矿装备研发的现状与进展[J]. 机械工程学报, 50 (2): 8-18. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201402002.htm 刘晓磊, 陆扬, 王胤, 等. 2020. 海洋资源开发与海洋工程地质——第二届国际海洋工程地质学术研讨会(ISMEG 2019)总结[J]. 工程地质学报, 28 (1): 169-177. doi: 10.13544/j.cnki.jeg.2019-493 刘晓磊, 朱超祁, 王栋, 等. 2017. 海洋工程地质进展——国际海洋工程地质学术研讨会(ISMEG 2016)总结[J]. 工程地质学报, 25 (3): 886-891. doi: 10.13544/j.cnki.jeg.2017.03.038 陆怡, 初凤友, 董彦辉, 等. 2020. 南海东北部陆坡结核成因及对冷泉活动的指示[J]. 海洋学研究, 38 (2): 16-25. doi: 10.3969/j.issn.1001-909X.2020.02.003 吕文正. 2008. 太平洋多金属结核中国开辟区矿床地质[M]. 北京: 海洋出版社. 倪建宇, 周怀阳, 彭晓彤, 等. 2002. 中国多金属结核开辟区的深海环境[J]. 海洋地质与第四纪地质, 22 (1): 43-47. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200201007.htm 彭赛锋. 2020. 海底沉积物原位土工力学测量装置测控系统设计与实现[J]. 矿冶工程, 40 (6): 26-29. doi: 10.3969/j.issn.0253-6099.2020.06.007 齐瀚琛, 王英. 2017. 多金属结核采矿对海底沉积物扰动的数值分析[J]. 浙江理工大学学报(自然科学版), 37 (4): 533-537. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJSG201704011.htm 邱电云, 费雪锦, 马莹. 1997. 大洋多金属结核开发对环境的影响[J]. 中国锰业, 15 (2): 46-49. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMM702.010.htm 石学法, 符亚洲, 李兵, 等. 2021. 我国深海矿产研究: 进展与发现(2011~2020年)[J]. 矿物岩石地球化学通报, 42 (2): 305-318. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH202102004.htm 宋连清. 1999. 大洋多金属结核矿区沉积物土工性质[J]. 海洋学报, 21 (6): 47-54. https://www.cnki.com.cn/Article/CJFDTOTAL-SEAC199906005.htm 眭良仁, 周怀阳, 沉华悌. 1995. 我国大洋多金属结核资源勘查进展[J]. 科技导报(北京), 29-31. https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB510.011.htm 王春生, 周怀阳, 倪建宇. 2003. 深海采矿环境影响研究: 进展、问题与展望[J]. 东海海洋, 21 (1): 55-64. doi: 10.3969/j.issn.1001-909X.2003.01.008 王春生, 周怀阳. 2001a. 深海采矿对海洋生态系统影响的评价Ⅰ. 上层生态系统[J]. 海洋环境科学, 20 (1): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-HYHJ200101000.htm 王春生, 周怀阳. 2001b. 深海采矿对海洋生态系统影响的评价Ⅱ. 底层生态系统[J]. 海洋环境科学, 20 (2): 32-37. https://www.cnki.com.cn/Article/CJFDTOTAL-HYHJ200102006.htm 王树仁, 阳宁, 王贵满. 2000. 太平洋C—C区中国矿区深海沉积物的强度特性研究[J]. 矿冶工程, 20 (3): 21-24. doi: 10.3969/j.issn.0253-6099.2000.03.007 吴波, 程小明, 田超, 等. 2016. 深海采矿系统水动力技术研究综述[J]. 中国造船, 57 (3): 204-214. doi: 10.3969/j.issn.1000-4882.2016.03.023 吴时国, 张汉羽, 矫东风, 等. 2020. 南海海底矿物资源开发前景[J]. 科学技术与工程, 20 (31): 12673-12682. doi: 10.3969/j.issn.1671-1815.2020.31.001 于淼, 邓希光, 姚会强, 等. 2018. 世界海底多金属结核调查与研究进展[J]. 中国地质, 45 (1): 29-38. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201801004.htm 于彦江, 段隆臣, 王海峰, 等. 2016. 西太平洋深海沉积物的物理力学性质初探[J]. 矿冶工程, 36 (5): 1-4. doi: 10.3969/j.issn.0253-6099.2016.05.001 张富元, 章伟艳, 冯旭文. 2011. 太平洋CC区多金属结核丰度和品位分布特征[J]. 矿物学报, (增刊), 711. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB2011S1374.htm 张富元, 章伟艳, 何高文, 等. 2001. 大洋多金属结核资源评价原理和矿区圈定方法[M]. 北京: 海洋出版社. 张红, 贾永刚, 刘晓磊, 等. 2019. 全海深海底沉积物力学特性原位测试技术[J]. 海洋地质前沿, 35 (2): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT201902001.htm 仉义星, 兰恒星, 李郎平, 等. 2019. 综合统计模型和物理模型的地质灾害精细评估——以福建省龙山社区为例[J]. 工程地质学报, 27 (3): 608-622. doi: 10.13544/j.cnki.jeg.2018-270 赵羿羽, 曾晓光, 郎舒妍. 2016. 深海采矿系统现状及展望[J]. 船舶物资与市场, (6): 39-41. https://www.cnki.com.cn/Article/CJFDTOTAL-CBWZ201606018.htm 赵羿羽, 曾晓光, 郎舒妍. 2017. 深海采矿环境影响不容忽视[J]. 船舶物资与市场, (1): 57-59. https://www.cnki.com.cn/Article/CJFDTOTAL-CBWZ201701017.htm 周怀阳, 王春生, 倪建宇. 2003. 现有深海采矿环境影响实验方法和结果评价[M]. 北京: 海洋出版社. 周怀阳. 2008. 基于CC区的多金属结核矿床成因地质模型[J]. 地球化学, 37 (4): 373-381. doi: 10.3321/j.issn:0379-1726.2008.04.011 周怀阳. 2015. 深海海底铁锰结核的秘密[J]. 自然杂志, 37 (6): 397-404. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZZ201506002.htm 朱超祁, 周蕾, 张红, 等. 2017. 南海北陆架坡表面沉积物的物理力学性质初探[J]. 工程地质学报, 25 (6): 1566-1573. doi: 10.13544/j.cnki.jeg.2017.06.020 -