初始风积黄土结构演化的环境温度效应

张伟伟 李彦荣 宫杨清 王蓉

张伟伟, 李彦荣, 宫杨清, 等. 2022. 初始风积黄土结构演化的环境温度效应[J]. 工程地质学报, 30(2): 357-365. doi: 10.13544/j.cnki.jeg.2021-0285
引用本文: 张伟伟, 李彦荣, 宫杨清, 等. 2022. 初始风积黄土结构演化的环境温度效应[J]. 工程地质学报, 30(2): 357-365. doi: 10.13544/j.cnki.jeg.2021-0285
Zhang Weiwei, Li Yanrong, Gong Yangqing, et al. 2022. Effects of temperature fluctuation on structural evolution of initial loess deposits[J]. Journal of Engineering Geology, 30(2): 357-365. doi: 10.13544/j.cnki.jeg.2021-0285
Citation: Zhang Weiwei, Li Yanrong, Gong Yangqing, et al. 2022. Effects of temperature fluctuation on structural evolution of initial loess deposits[J]. Journal of Engineering Geology, 30(2): 357-365. doi: 10.13544/j.cnki.jeg.2021-0285

初始风积黄土结构演化的环境温度效应

doi: 10.13544/j.cnki.jeg.2021-0285
基金项目: 

国家自然科学基金 41877276

详细信息
    作者简介:

    张伟伟(1992-),女,博士生,主要从事地质灾害研究工作. E-mail:zhangweiwei0083@163.com

    通讯作者:

    李彦荣(1978-),男,博士,教授,博士生导师,主要从事黄土地质工程研究工作. E-mail:li.dennis@hotmail.com

  • 中图分类号: P642.13+1

EFFECTS OF TEMPERATURE FLUCTUATION ON STRUCTURAL EVOLU ̄TION OF INITIAL LOESS DEPOSITS

Funds: 

the National Natural Science Foundation of China 41877276

  • 摘要: 现今的黄土结构是在黄土初始风成堆积及后期黄土化过程中逐步形成的。季节性冷暖更替和昼夜气温变化使得初始风积黄土不断经受升降温循环作用,由此引发的结构演变是黄土化过程不可或缺的一部分。而关于初始风积黄土在温度循环作用下的结构演化规律及机理目前尚不清楚。本文通过模拟风积环境,再造了初始风积黄土样品,开展了温度循环物理模拟试验。采用温度传感器、激光位移传感器和高清摄影系统对环境温度、土样内部温度、土样竖向变形及顶面结构进行了实时监测。试验结果发现:土样的温度和竖向变形均随环境温度的变化呈周期性波动,波动曲线相较于环境温度均呈现出一定滞后;且土样竖向变形和土样温度的波动具有同步性。随温度循环次数的增加,土样呈整体收缩趋势,土样也由弹塑性变形逐渐过渡为弹性变形。相比于湿-干循环和上覆荷载作用,温度循环导致的初始风积黄土竖向应变最小(约为0.25%),结构扰动程度最弱。以上结果说明,虽然温度循环是风成黄土结构演化过程中的核心环境因素之一,但其在初期黄土结构演化中属次要角色。
  • 图  1  初始风积黄土样粒径级配曲线

    Figure  1.  Particle size accumulated curve of the initial loess deposit

    图  2  温度循环试验装置与传感器布置

    a. DHTH-500-40-P-SD环境试验箱;b. 土体结构监测系统;c. 土样竖向位移监测点布置

    Figure  2.  Setup of the experiment

    图  3  试验箱内循环温度设置

    Figure  3.  Circulating temperature in the test chamber

    图  4  不同循环次数后试样TEM-1顶面结构特征

    a. 0次;b. 35次;c. 40次

    Figure  4.  Surface structure characteristics of sample TEM-1 after different cycles

    图  5  环境温度(a)、土体温度(b)和试样TEM-2顶面代表点竖向变形(c)随时间变化趋势

    T3-T12表示代表点正下方竖向深度分别为3 cm、6 cm、9 cm、12 cm处的土体温度。试验早期数据传输出现临时故障,导致第4~7次温度循环过程中的数据缺失

    Figure  5.  The variation of ambient temperature, soil temperature and vertical displacement of sample TEM-2 with time

    图  6  代表性时间段(531 h至603 h)内的环境温度(a)、土体温度(b)和试样TEM-2代表点竖向变形(c)随时间变化趋势

    and vertical displacement of sample TEM-2 with time in the representative period(from 531 h to 603 h)

    Figure  6.  The variation of ambient temperature, soil temperature

    图  7  a. 土体温度随深度变化;b. 土样竖向变形理论计算值与实际监测值对比

    注:变形为正值代表土样膨胀,负值代表土样收缩

    Figure  7.  a. Variation of soil temperature with depth;b. Comparison between the theoretical calculated value and the actual monitored value of vertical displacement

    图  8  a. 土体导热系数随干密度变化趋势(图例中数字表示质量含水率);b. 土体导热系数随含水率变化趋势(图例中数字表示土样干密度,单位g·cm-3)(数据来源:初始风积黄土样和原状黄土样相关数据由实验室实测获得,其余数据王铁行等(2007)陈毅(2018))

    Figure  8.  a. Variation of soil thermal conductivity coefficient with dry density(the figures in the legend indicate mass moisture content); b. Variation of soil thermal conductivity coefficient with water content(the figures in the legend indicate the dry density of soil sample)(Data source: the data of initial loess deposit sample and undisturbed loess sample are obtained from laboratory measurement, and the rest data are from Wang et al. (2007) and Chen(2018))

    图  9  温度循环作用下初始风积黄土结构演化机制模型

    a. 微观水平(图中矿物颗粒颜色不同代表矿物种类不同);b. 宏观水平

    Figure  9.  Structural evolution mechanism model of initial loess deposit under thermal cycles

    图  10  上覆荷载作用下初始风积黄土样竖向应变

    a. 任一上覆荷载作用下初始风积黄土样竖向应变随时间变化趋势;b. 初始风积黄土样上覆荷载-竖向应变曲线

    Figure  10.  Vertical strain of initial loess deposit under overlying load

  • Assallay A M, Rogers C D F, Smalley I J. 1997. Formation and collapse of metastable particle packings and open structures in loess deposits[J]. Engineering Geology, 48(1-2): 101-115. doi: 10.1016/S0013-7952(97)81916-3
    Bakun-Mazor D, Hatzor Y H, Glaser S D, et al. 2013. Thermally vs. seismically induced block displacements in Masada rock slopes[J]. International Journal of Rock Mechanics and Mining Sciences, 61: 196-211. doi: 10.1016/j.ijrmms.2013.03.005
    Browning J, Meredith P, Gudmundsson A. 2016. Cooling-dominated cracking in thermally stressed volcanic rocks[J]. Geophysical Research Letters, 43(16): 8417-8425. doi: 10.1002/2016GL070532
    Chen X X, Zhao P Y. 1988. Fundamentals of heat transfer and deformation[M]. Changsha: Hunan University Press.
    Chen Y. 2018. Study of temperature effect induced by insolation on deterioration of earthen monument in arid areas[D]. Lanzhou: Lanzhou University.
    Collins B D, Stock G M. 2016. Rockfall triggering by cyclic thermal stressing of exfoliation fractures[J]. Nature Geoscience, 9(5): 395-400. doi: 10.1038/ngeo2686
    Donna A D, Laloui L. 2015. Response of soil subjected to thermal cyclic loading: Experimental and constitutive study[J]. Engineering Geology, 190: 65-76. doi: 10.1016/j.enggeo.2015.03.003
    Gao Y, Ma Y X, Zhang W Y, et al. 2019. Analysis of humidifying deformation characteristics and microstructure of loess in Xining Area[J]. Journal of Engineering Geology, 27(4): 803-810. doi: 10.13544/j.cnki.jeg.yt2019416
    Guo Z T, Liu T S, Fedoroff N, et al. 1998. Climate extremes in loess of China coupled with the strength of deep-water formation in the North Atlantic[J]. Global and Planetary Change, 18(3-4): 113-128. doi: 10.1016/S0921-8181(98)00010-1
    Lamp J L, Marchant D R, Mackay S L, et al. 2017. Thermal stress weathering and the spalling of Antarctic rocks[J]. Journal of Geophysical Research Earth Surface, 122: 3-24. doi: 10.1002/2016JF003992
    Lan H X, Zhao X X, Macciotta R, et al. 2021. The cyclic expansion and contraction characteristics of a loess slope and implications for slope stability[J]. Scientific Reports, 11(1): 2250. doi: 10.1038/s41598-021-81821-4
    Li R J, Wang X, Zhang Y J, et al. 2019. Experimental tests on temperature change of shallow unsaturated loess under atmospheric action and its influencing factors[J]. Journal of Engineering Geology, 27(4): 766-774. doi: 10.13544/j.cnki.jeg.yt2019642
    Li Y R, He S D, Deng X H, et al. 2018. Characterization of macropore structure of Malan loess in NW China based on 3D pipe models constructed by using computed tomography technology[J]. Journal of Asian Earth Sciences, 154: 271-279. doi: 10.1016/j.jseaes.2017.12.028
    Li Y R, Zhang W W, He S D, et al. 2020. Wetting-driven formation of present-day loess structure[J]. Geoderma, 377: 114564. doi: 10.1016/j.geoderma.2020.114564
    Liu G, Hu F N, Mohamed A M, et al. 2018. Holocene erosion triggered by climate change in the central Loess Plateau of China[J]. Catena, 160: 103-111. doi: 10.1016/j.catena.2017.09.013
    Liu T S. 1985. Loess and environment[M]. Beijing: Science Press.
    Meredith P G, Knight K S, Boon S A, et al. 2001. The microscopic origin of thermal cracking in rocks: An investigation by simultaneous time-of-flight neutron diffraction and acoustic emission monitoring[J]. Geophysical Research Letters, 28(10): 2105-2108. doi: 10.1029/2000GL012470
    Pécsi M. 1990. Loess is not just the accumulation of dust[J]. Quaternary International, 7/8: 1-21. doi: 10.1016/1040-6182(90)90034-2
    Schatz A K, Scholten T, Kühn P. 2015. Paleoclimate and weathering of the Tokaj(Hungary) loess-paleosol sequence[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 426: 170-182. doi: 10.1016/j.palaeo.2015.03.016
    Simmons G, Cooper H W. 1978. Thermal cycling cracks in three igneous rocks[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 15(4): 145-148. doi: 10.1016/0148-9062(78)91220-2
    Smalley I J, Marković S B. 2014. Loessification and hydroconsolidation: There is a connection[J]. Catena, 117: 94-99. doi: 10.1016/j.catena.2013.07.006
    Sprafke T, Obreht I. 2016. Loess: Rock, sediment or soil-What is missing for its definition?[J]. Quaternary International, 399: 198-207. doi: 10.1016/j.quaint.2015.03.033
    Sun B, Zhou Z H, Zhang H Y, et al. 2011. Characteristics and prediction model of surface temperature for rammed earthen architecture ruins[J]. Rock and Soil Mechanics, 32(3): 867-871. http://ytlx.whrsm.ac.cn/EN/Y2011/V32/I3/867
    Usmani A S, Rotter J M, Lamont R S, et al. 2001. Fundamental principles of structural behaviour under thermal effects[J]. Fire Safety Journal, 36: 721-744. doi: 10.1016/S0379-7112(01)00037-6
    Viles H, Ehlmann B, Wilson C F, et al. 2010. Simulating weathering of basalt on Mars and Earth by thermal cycling[J]. Geophysical Research Letters, 37(18): L18201. doi: 10.1029/2010GL043522
    Wang T X, Liu Z C, Lu J. 2007. Experimental study on coefficient of thermal conductivity and specific volume heat of loess[J]. Rock and Soil Mechanics, 28(4): 655-658. http://ytlx.whrsm.ac.cn/EN/Y2007/V28/I4/655
    Zhang H Y, Liu P, Wang J F, et al. 2009. Generation and detachment of surface crust on ancient earthen architectures[J]. Rock and Soil Mechanics, 30(7): 1883-1891. http://ytlx.whrsm.ac.cn/EN/Y2009/V30/I7/1883
    Zhao H, Tao W, Lu N, et al. 2019. An adaptive temperature compensation method for laser displacement sensor: China, CN110470227A[P]. 2019-11-19.
    陈兴祥, 赵培炎. 1988. 传热与热变形基础[M]. 长沙: 湖南大学出版社.
    陈毅. 2018. 干旱土遗址劣化的日照温度效应研究[D]. 兰州: 兰州大学.
    高英, 马艳霞, 张吾渝, 等. 2019. 西宁地区黄土增湿变形特性及微观结构分析[J]. 工程地质学报, 27(4): 803-810. doi: 10.13544/j.cnki.jeg.yt2019416
    李仁杰, 王旭, 张延杰, 等. 2019. 大气作用下浅层非饱和黄土温度变化及其影响因素研究[J]. 工程地质学报, 27(4): 766-774. doi: 10.13544/j.cnki.jeg.yt2019642
    刘东生. 1985. 黄土与环境[M]. 北京: 科学出版社.
    孙博, 周仲华, 张虎元, 等. 2011. 夯土建筑遗址表面温度变化特征及预报模型[J]. 岩土力学, 32(3): 867-871. doi: 10.3969/j.issn.1000-7598.2011.03.038
    王铁行, 刘自成, 卢靖. 2007. 黄土导热系数和比热容的实验研究[J]. 岩土力学, 28(4): 655-658. doi: 10.3969/j.issn.1000-7598.2007.04.004
    张虎元, 刘平, 王锦芳, 等. 2009. 土建筑遗址表面结皮形成与剥离机制研究[J]. 岩土力学, 30(7): 1883-1891. doi: 10.3969/j.issn.1000-7598.2009.07.002
    赵辉, 陶卫, 吕娜, 等. 2019. 一种激光位移传感器温度自适应补偿方法: 中国, CN110470227A[P]. 2019-11-19.
  • 加载中
图(10)
计量
  • 文章访问数:  86
  • HTML全文浏览量:  18
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-24
  • 修回日期:  2021-07-01
  • 刊出日期:  2022-04-25

目录

    /

    返回文章
    返回