EFFECTS OF TEMPERATURE FLUCTUATION ON STRUCTURAL EVOLU ̄TION OF INITIAL LOESS DEPOSITS
-
摘要: 现今的黄土结构是在黄土初始风成堆积及后期黄土化过程中逐步形成的。季节性冷暖更替和昼夜气温变化使得初始风积黄土不断经受升降温循环作用,由此引发的结构演变是黄土化过程不可或缺的一部分。而关于初始风积黄土在温度循环作用下的结构演化规律及机理目前尚不清楚。本文通过模拟风积环境,再造了初始风积黄土样品,开展了温度循环物理模拟试验。采用温度传感器、激光位移传感器和高清摄影系统对环境温度、土样内部温度、土样竖向变形及顶面结构进行了实时监测。试验结果发现:土样的温度和竖向变形均随环境温度的变化呈周期性波动,波动曲线相较于环境温度均呈现出一定滞后;且土样竖向变形和土样温度的波动具有同步性。随温度循环次数的增加,土样呈整体收缩趋势,土样也由弹塑性变形逐渐过渡为弹性变形。相比于湿-干循环和上覆荷载作用,温度循环导致的初始风积黄土竖向应变最小(约为0.25%),结构扰动程度最弱。以上结果说明,虽然温度循环是风成黄土结构演化过程中的核心环境因素之一,但其在初期黄土结构演化中属次要角色。Abstract: The present-day loess structure is gradually formed with the process of initial accumulation of loess particles and the later lossification. The climate is typically dry in the period of loess accumulation and the initial loess deposit(ILD)suffers from daily and seasonal temperature fluctuations,which evidently leads to structural evolution of ILD. However,the mechanism behind is still unclear. In this study,ILD is reconstructed in the laboratory and physical simulation with temperature fluctuation is carried out. Ambient temperature,soil temperature,vertical deformation and structure of top surface of soil sample are monitored with thermocouple temperature sensors,laser displacement sensors and an industrial camera of high-resolution. The results show that both soil temperature and vertical deformation of soil sample fluctuate with the ambient temperature,but lag behind. The vertical deformation exhibits a synchronous fluctuation with the soil temperature. With temperature cycles,the soil sample keeps contraction,and the soil sample experiences elastic-plastic deformation and then elastic deformation. Compared with the effects of water and overlying load,the deformation and structure disturbance of ILD due to temperature fluctuation are minimum(about 0.25%). This indicates that temperature fluctuation plays a noncrucial role in the formation of present-day loess structure.
-
Key words:
- Lossification /
- Initial loess deposit /
- Temperature fluctuation /
- Hysteresis /
- Contraction
-
图 8 a. 土体导热系数随干密度变化趋势(图例中数字表示质量含水率);b. 土体导热系数随含水率变化趋势(图例中数字表示土样干密度,单位g·cm-3)(数据来源:初始风积黄土样和原状黄土样相关数据由实验室实测获得,其余数据王铁行等(2007);陈毅(2018))
Figure 8. a. Variation of soil thermal conductivity coefficient with dry density(the figures in the legend indicate mass moisture content); b. Variation of soil thermal conductivity coefficient with water content(the figures in the legend indicate the dry density of soil sample)(Data source: the data of initial loess deposit sample and undisturbed loess sample are obtained from laboratory measurement, and the rest data are from Wang et al. (2007) and Chen(2018))
-
Assallay A M, Rogers C D F, Smalley I J. 1997. Formation and collapse of metastable particle packings and open structures in loess deposits[J]. Engineering Geology, 48(1-2): 101-115. doi: 10.1016/S0013-7952(97)81916-3 Bakun-Mazor D, Hatzor Y H, Glaser S D, et al. 2013. Thermally vs. seismically induced block displacements in Masada rock slopes[J]. International Journal of Rock Mechanics and Mining Sciences, 61: 196-211. doi: 10.1016/j.ijrmms.2013.03.005 Browning J, Meredith P, Gudmundsson A. 2016. Cooling-dominated cracking in thermally stressed volcanic rocks[J]. Geophysical Research Letters, 43(16): 8417-8425. doi: 10.1002/2016GL070532 Chen X X, Zhao P Y. 1988. Fundamentals of heat transfer and deformation[M]. Changsha: Hunan University Press. Chen Y. 2018. Study of temperature effect induced by insolation on deterioration of earthen monument in arid areas[D]. Lanzhou: Lanzhou University. Collins B D, Stock G M. 2016. Rockfall triggering by cyclic thermal stressing of exfoliation fractures[J]. Nature Geoscience, 9(5): 395-400. doi: 10.1038/ngeo2686 Donna A D, Laloui L. 2015. Response of soil subjected to thermal cyclic loading: Experimental and constitutive study[J]. Engineering Geology, 190: 65-76. doi: 10.1016/j.enggeo.2015.03.003 Gao Y, Ma Y X, Zhang W Y, et al. 2019. Analysis of humidifying deformation characteristics and microstructure of loess in Xining Area[J]. Journal of Engineering Geology, 27(4): 803-810. doi: 10.13544/j.cnki.jeg.yt2019416 Guo Z T, Liu T S, Fedoroff N, et al. 1998. Climate extremes in loess of China coupled with the strength of deep-water formation in the North Atlantic[J]. Global and Planetary Change, 18(3-4): 113-128. doi: 10.1016/S0921-8181(98)00010-1 Lamp J L, Marchant D R, Mackay S L, et al. 2017. Thermal stress weathering and the spalling of Antarctic rocks[J]. Journal of Geophysical Research Earth Surface, 122: 3-24. doi: 10.1002/2016JF003992 Lan H X, Zhao X X, Macciotta R, et al. 2021. The cyclic expansion and contraction characteristics of a loess slope and implications for slope stability[J]. Scientific Reports, 11(1): 2250. doi: 10.1038/s41598-021-81821-4 Li R J, Wang X, Zhang Y J, et al. 2019. Experimental tests on temperature change of shallow unsaturated loess under atmospheric action and its influencing factors[J]. Journal of Engineering Geology, 27(4): 766-774. doi: 10.13544/j.cnki.jeg.yt2019642 Li Y R, He S D, Deng X H, et al. 2018. Characterization of macropore structure of Malan loess in NW China based on 3D pipe models constructed by using computed tomography technology[J]. Journal of Asian Earth Sciences, 154: 271-279. doi: 10.1016/j.jseaes.2017.12.028 Li Y R, Zhang W W, He S D, et al. 2020. Wetting-driven formation of present-day loess structure[J]. Geoderma, 377: 114564. doi: 10.1016/j.geoderma.2020.114564 Liu G, Hu F N, Mohamed A M, et al. 2018. Holocene erosion triggered by climate change in the central Loess Plateau of China[J]. Catena, 160: 103-111. doi: 10.1016/j.catena.2017.09.013 Liu T S. 1985. Loess and environment[M]. Beijing: Science Press. Meredith P G, Knight K S, Boon S A, et al. 2001. The microscopic origin of thermal cracking in rocks: An investigation by simultaneous time-of-flight neutron diffraction and acoustic emission monitoring[J]. Geophysical Research Letters, 28(10): 2105-2108. doi: 10.1029/2000GL012470 Pécsi M. 1990. Loess is not just the accumulation of dust[J]. Quaternary International, 7/8: 1-21. doi: 10.1016/1040-6182(90)90034-2 Schatz A K, Scholten T, Kühn P. 2015. Paleoclimate and weathering of the Tokaj(Hungary) loess-paleosol sequence[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 426: 170-182. doi: 10.1016/j.palaeo.2015.03.016 Simmons G, Cooper H W. 1978. Thermal cycling cracks in three igneous rocks[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 15(4): 145-148. doi: 10.1016/0148-9062(78)91220-2 Smalley I J, Marković S B. 2014. Loessification and hydroconsolidation: There is a connection[J]. Catena, 117: 94-99. doi: 10.1016/j.catena.2013.07.006 Sprafke T, Obreht I. 2016. Loess: Rock, sediment or soil-What is missing for its definition?[J]. Quaternary International, 399: 198-207. doi: 10.1016/j.quaint.2015.03.033 Sun B, Zhou Z H, Zhang H Y, et al. 2011. Characteristics and prediction model of surface temperature for rammed earthen architecture ruins[J]. Rock and Soil Mechanics, 32(3): 867-871. http://ytlx.whrsm.ac.cn/EN/Y2011/V32/I3/867 Usmani A S, Rotter J M, Lamont R S, et al. 2001. Fundamental principles of structural behaviour under thermal effects[J]. Fire Safety Journal, 36: 721-744. doi: 10.1016/S0379-7112(01)00037-6 Viles H, Ehlmann B, Wilson C F, et al. 2010. Simulating weathering of basalt on Mars and Earth by thermal cycling[J]. Geophysical Research Letters, 37(18): L18201. doi: 10.1029/2010GL043522 Wang T X, Liu Z C, Lu J. 2007. Experimental study on coefficient of thermal conductivity and specific volume heat of loess[J]. Rock and Soil Mechanics, 28(4): 655-658. http://ytlx.whrsm.ac.cn/EN/Y2007/V28/I4/655 Zhang H Y, Liu P, Wang J F, et al. 2009. Generation and detachment of surface crust on ancient earthen architectures[J]. Rock and Soil Mechanics, 30(7): 1883-1891. http://ytlx.whrsm.ac.cn/EN/Y2009/V30/I7/1883 Zhao H, Tao W, Lu N, et al. 2019. An adaptive temperature compensation method for laser displacement sensor: China, CN110470227A[P]. 2019-11-19. 陈兴祥, 赵培炎. 1988. 传热与热变形基础[M]. 长沙: 湖南大学出版社. 陈毅. 2018. 干旱土遗址劣化的日照温度效应研究[D]. 兰州: 兰州大学. 高英, 马艳霞, 张吾渝, 等. 2019. 西宁地区黄土增湿变形特性及微观结构分析[J]. 工程地质学报, 27(4): 803-810. doi: 10.13544/j.cnki.jeg.yt2019416 李仁杰, 王旭, 张延杰, 等. 2019. 大气作用下浅层非饱和黄土温度变化及其影响因素研究[J]. 工程地质学报, 27(4): 766-774. doi: 10.13544/j.cnki.jeg.yt2019642 刘东生. 1985. 黄土与环境[M]. 北京: 科学出版社. 孙博, 周仲华, 张虎元, 等. 2011. 夯土建筑遗址表面温度变化特征及预报模型[J]. 岩土力学, 32(3): 867-871. doi: 10.3969/j.issn.1000-7598.2011.03.038 王铁行, 刘自成, 卢靖. 2007. 黄土导热系数和比热容的实验研究[J]. 岩土力学, 28(4): 655-658. doi: 10.3969/j.issn.1000-7598.2007.04.004 张虎元, 刘平, 王锦芳, 等. 2009. 土建筑遗址表面结皮形成与剥离机制研究[J]. 岩土力学, 30(7): 1883-1891. doi: 10.3969/j.issn.1000-7598.2009.07.002 赵辉, 陶卫, 吕娜, 等. 2019. 一种激光位移传感器温度自适应补偿方法: 中国, CN110470227A[P]. 2019-11-19. -