有机质对软土次固结特性的影响机制研究

贺建清 王朦 陈立国 胡惠华 陈秋南

贺建清, 王朦, 陈立国, 等. 2022. 有机质对软土次固结特性的影响机制研究[J]. 工程地质学报, 30(2): 366-373. doi: 10.13544/j.cnki.jeg.2021-0288
引用本文: 贺建清, 王朦, 陈立国, 等. 2022. 有机质对软土次固结特性的影响机制研究[J]. 工程地质学报, 30(2): 366-373. doi: 10.13544/j.cnki.jeg.2021-0288
He Jianqing, Wang Meng, Chen Liguo, et al. 2022. Influence mechanism of organic matter on secondary consolidation characteristics of soft soil[J]. Journal of Engineering Geology, 30(2): 366-373. doi: 10.13544/j.cnki.jeg.2021-0288
Citation: He Jianqing, Wang Meng, Chen Liguo, et al. 2022. Influence mechanism of organic matter on secondary consolidation characteristics of soft soil[J]. Journal of Engineering Geology, 30(2): 366-373. doi: 10.13544/j.cnki.jeg.2021-0288

有机质对软土次固结特性的影响机制研究

doi: 10.13544/j.cnki.jeg.2021-0288
基金项目: 

国家自然科学基金 52078211

湖南省自然科学基金项目 2021JJ30252

详细信息
    通讯作者:

    贺建清(1964-),男,博士,教授,硕士生导师,主要从事土力学与地基基础方面的科研与教学工作. E-mail:hjqing2000@163.com

  • 中图分类号: TU447

INFLUENCE MECHANISM OF ORGANIC MATTER ON SECONDARY CONSOLIDATION CHARACTERISTICS OF SOFT SOIL

Funds: 

the National Natural Science Foundation of China 52078211

the Natural Science Foundation of Hunan Province, China 2021JJ30252

  • 摘要: 利用洞庭湖软土、高有机质含量泥炭土重塑有机质含量不同的试样,进行一维固结蠕变试验,测定其吸附结合水含量和有机质含量,确定吸附结合水含量与有机质含量的关系,研究有机质含量对软土次固结特性的影响机制。研究结果表明,土中的有机质含量越高,其吸附结合水含量越大,两者呈线性递增关系,并提出了相应的关系计算式;次固结系数与固结压力的关系曲线在结构强度附近有一个峰值点,在较大固结压力作用下,次固结系数可近似视为一不变的常数;随着土中有机质含量增加,次固结系数呈明显增加的趋势,在高应力水平下表现尤为明显,并探讨了其产生原因。研究成果对控制软土地区工后沉降有一定的指导意义。
  • 图  1  吸附结合水的形成过程

    a. 1#组土样(重塑天然土); b. 3#组土样(人工有机质软土)

    Figure  1.  Formation process of adsorbed bound water

    图  2  试样吸附结合水含量Wg与有机质含量OMC的关系

    Figure  2.  Relationship between adsorption bound water content Wg of test soils samples and organic matter content OMC

    图  3  e-lg t曲线

    a. 1#组土样(重塑天然土);b. 3#组土样(人工有机质土)

    Figure  3.  e-lg t curves

    图  4  次固结系数Cα与固结压力p的关系

    Figure  4.  Relationship between secondary consolidation coefficient Cα and consolidation pressure p

    图  5  次固结系数Cα与有机质含量OMC的关系

    Figure  5.  Relationship between secondary consolidation coefficient Cα and organic matter content OMC

    图  6  饱和软土的三相物质模型

    Figure  6.  Three-phase material model of saturated soft soil

    表  1  土样基本物理力学性质指标

    Table  1.   Basic physical and mechanical properties of soil samples

    密度
    ρ/g·cm-3
    含水量
    w/%
    土粒比重
    Gs
    孔隙比
    e
    压缩系数
    a/MPa-1
    液限
    wL/%
    塑限
    wP/%
    塑性指数
    IP
    液性指数
    IL
    黏聚力
    c/kPa
    内摩擦角
    φ/(°)
    1.78 44.2 2.61 1.06 1.02 44.1 15.26 28.84 1.03 7.6 13.83
    下载: 导出CSV

    表  2  试验土样有机质含量

    Table  2.   Organic matter content of test soil samples

    组编号 1# 2# 3# 4# 5# 6#
    试样编号 1#-1 1#-2 2#-1 2#-2 3#-1 3#-2 4#-1 4#-2 5#-1 5#-2 6#-1 6#-2
    γ/kN·m-3 17.32 17.28 17.23 17.21 17.24 17.31 17.26 17.29 17.25 17.21 17.19 17.25
    w/% 43.84 43.75 44.38 44.32 44.36 44.30 44.01 44.10 44.36 44.20 44.31 44.25
    OMC/% 2.89 3.01 6.45 6.37 9.40 8.90 12.80 13.12 16.59 16.51 19.11 18.79
    下载: 导出CSV

    表  3  试验土样的吸附结合水含量

    Table  3.   Adsorption bound water content of test soil samples

    组编号 1# 2# 3# 4# 5# 6#
    试样编号 1#-1 1#-2 2#-1 2#-2 3#-1 3#-2 4#-1 4#-2 5#-1 5#-2 6#-1 6#-2
    Wg/% 12.83 13.72 14.40 13.75 14.62 14.26 16.02 15.25 16.11 16.70 17.56 16.49
    下载: 导出CSV
  • Badv K, Sayadian T. 2012. An investigation into the geotechnical characteristics of Urmia peat[J]. Transaction of Civil Engineering, 36(C2): 167-180. http://ijstc.shirazu.ac.ir/article_633_1fd5d36abe37df98125c53d009d52995.pdf
    British Standard Institution. 1990. Methods of test for soils for civil engineering purposes(BS 1377-5: 1990)[S]. London: British Standards Institution.
    Feng D L, Wu L J, Zhang Y M. 2019. Study on the consolidation properties of peaty soil[J]. Chinese Journal of Underground Space and Engineering, 15(5): 1384-1392. https://en.cnki.com.cn/Article_en/CJFDTotal-BASE201905014.htm
    Feng Z G, Zhu J G. 2009. Experimental study on secondary consolidation behavior of soft soils[J]. Journal of Hydraulic Engineering, 40(5): 583-588. https://www.researchgate.net/publication/290046525_Experimental_study_on_secondary_consolidation_behavior_of_soft_soils
    Gao Y B, Zhu H H, Ye G B, et al. 2004. The investigation of the coefficient of secondary compression Ca in odometer tests[J]. Chinese Journal of Geotechnical Engineering, 26(4): 459-463. https://www.researchgate.net/publication/291212963_Investigation_of_the_coefficient_of_secondary_compression_Ca_in_odometer_tests
    Gu R G, Fang Y G. 2009a. Exploration of substance bases and mechanism of soft soil rheology[J]. Rock and Soil Mechanics, 30(7): 1915-1919, 1932. http://ytlx.whrsm.ac.cn/EN/Y2009/V30/I7/1915
    Gu R G, Fang Y G. 2009b. Experiment study of the effects of organic matter on the rheological characteristics of soft soils[J]. China Civil Engineering Journal, 42(1): 101-106. https://www.researchgate.net/publication/290537894_Experiment_study_of_the_effects_of_organic_matter_on_the_rheological_characteristics_of_soft_soils
    Gui Y, Yu Z H, Liu H M, et al. 2015. Secondary consolidation properties and mechanism of plateau lacustrine peaty soil[J]. Chinese Journal of Geotechnical Engineering, 37(8): 1390-1398. doi: 10.11779/CJGE201508005
    Hu G X. 2013. Experimental study on the influence of soil composition and distribution on soil strength and rheology[D]. Guangzhou: South China University of Technology.
    Imai Y, Akaishi M, Huang W C, et al. 2017. Long-term settlement behavior of soft grounds and secondary compression[J]. Journal of the Chinese Institute of Engineers, 40(5): 361-369. doi: 10.1080/02533839.2017.1321971
    Jiang S. 2015. Experimental study on physical-mechanical behavior ofsoft clays at Chongwan section of Huaihe-Changjiang waterway[D]. Nanjing: Southeast University.
    Jiang Z X. 1994. Dianchi peaty soil[M]. Chengdu: Southwest Jiaotong University Press.
    Kapustin V, Khaustov V, Kapustin V K. 2017. Researches of soilses secondary consolidation[J]. Journal of Applied Engineering Science, 15(3): 339-344. doi: 10.5937/jaes15-14652
    Li G S, Pan Y J, Meng X H. 2019. Comparative experimental analysis of physical and mechanical properties of saturated soft soil under different sampling methods[J]. Journal of Engineering Geology, 27(3): 550-558. doi: 10.13544/j.cnki.jeg.2018-103
    Li W P, Yu S Z, Wang B R, et al. 1995. Measurement and significance of adsorbed bound water content of clay soil in deep coal mine[J]. Hydrogeology & Engineering Geology, 22(3): 31-34.
    Liu Z Y, Ning B Z, Xia Y Y, et al. 2019. One-dimensional rheological consolidation analysis of saturated clay considering variable permeability[J]. Journal of Engineering Geology, 27(6): 1320-1329. https://tjxb.ijournals.cn/jtunsen/article/abstract/18259?st=article_issue
    Ni J, Li S S, Han Y Q, et al. 2019. Experimental study on creep behavior of saturated soft clays under loading and unloading conditions[J]. Journal of Engineering Geology, 27(6): 1262-1269. doi: 10.13544/j.cnki.jeg.2017-625
    Ou Z F, Fang Y G. 2017. The influence of organic matter content on the rheological model parameters of soft clay[J]. Soil Mechanics and Foundation Engineering, 54(4): 283-288. doi: 10.1007/s11204-017-9470-4
    Santagata M, Bobet A, Johnston C T, et al. 2008. One-dimensional compression behavior of a soil with high organic matter content[J]. Journal of Geotechnical and Geoenvironmental Engineering, 134(1): 1-13. doi: 10.1061/(ASCE)1090-0241(2008)134:1(1)
    Shao G H, Liu S Y. 2008. Research on secondary consolidation of structural marine clays[J]. Rock and Soil Mechanics, 29(8): 2057-2063. http://ytlx.whrsm.ac.cn/EN/Y2008/V29/I8/2057
    Sun P P, Zhang M S, Gu T F, et al. 2020. Creeping characteristics of northern red clay under controlled matric suctions[J]. Journal of Engineering Geology, 28(3): 500-509. doi: 10.13544/j.cnki.jeg.2019-457
    The National Standards Compilation Group of People's Republic of China. 2019 Standard for geotechnical testing method(GB/T 50123-2019)[S]. Beijing: China Planning Press.
    Wu F C. 1984. Some characteristics of adsorption-bonded water measurement and seepage of clay soil[J]. Chinese Journal of Geotechnical Engineering, 6(6): 84-93.
    Xiong Y. 1979. Composition and compound of soil colloid[J]. Chinese Journal of Soil Science, (5): 1-8, 28.
    Yang K M. 1981. On the engineering classification of organic soil in my country[J]. Journal of Harbin University of Civil Engineering, (2): 105-116.
    Yu X J, Yin Z Z, Dong W J. 2007. Influence of load on secondary consolidation deformation of soft soils[J]. Chinese Journal of Geotechnical Engineering, 29(6): 913-916. http://manu31.magtech.com.cn/Jwk_ytgcxb/EN/abstract/abstract12526.shtml
    Yuan J, Fang Y G, Gu R G, et al. 2014. Experimental study for influence of content and distribution of rheological material on soft soil creep properties[J]. Chinese Journal of Rock Mechanics and Engineering, 33(S1): 2924-2929. https://en.cnki.com.cn/Article_en/CJFDTOTAL-YSLX2014S1046.htm
    Zhou Q J, Chen X P. 2006. Test study on properties of secondary consolidation of soft soil[J]. Rock and Soil Mechanics, 27(3): 404-408. https://www.researchgate.net/publication/293268392_Test_study_on_properties_of_secondary_consolidation_of_soft_soil
    冯瑞玲, 吴立坚, 张益铭. 2019. 泥炭土的固结特性试验研究[J]. 地下空间与工程学报, 15(5): 1384-1392. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201905014.htm
    冯志刚, 朱俊高. 2009. 软土次固结变形特性试验研究[J]. 水利学报, 40(5): 583-588. doi: 10.3321/j.issn:0559-9350.2009.05.011
    高彦斌, 朱合华, 叶观宝, 等. 2004. 饱和软黏土一维次压缩系数Ca值的试验研究[J]. 岩土工程学报, 26(4): 459-463. doi: 10.3321/j.issn:1000-4548.2004.04.006
    谷任国, 房营光. 2009a. 软土流变的物质基础及流变机制探索[J]. 岩土力学, 30(7): 1915-1919, 1932. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200907008.htm
    谷任国, 房营光. 2009b. 有机质对软土流变性质影响的试验研究[J]. 土木工程学报, 42(1): 101-106. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200901023.htm
    桂跃, 余志华, 刘海明, 等. 2015. 高原湖相泥炭土次固结特性及机理分析[J]. 岩土工程学报, 37(8): 1390-1398. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201508009.htm
    胡桂衔. 2013. 土体成分及其分布对土体强度和流变性影响的试验研究[D]. 广州: 华南理工大学.
    姜爽. 2015. 淮河入江水道崇湾段特殊软土的物理力学性状试验研究[D]. 南京: 东南大学.
    蒋忠信. 1994. 滇池泥炭土[M]. 成都: 西南交通大学出版社.
    李高山, 潘永坚, 孟叙华. 2019. 不同取样方法下饱和软土物理力学性状对比试验分析[J]. 工程地质学报, 27(3): 550-558. doi: 10.13544/j.cnki.jeg.2018-103
    李文平, 于双忠, 王柏荣, 等. 1995. 煤矿区深部黏性土吸附结合水含量测定及其意义[J]. 水文地质工程地质, 22(3): 31-34. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG503.009.htm
    刘忠玉, 宁秉正, 夏洋洋, 等. 2019. 考虑变渗透系数的饱和黏土一维流变固结分析[J]. 工程地质学报, 27(6): 1320-1329. doi: 10.13544/j.cnki.jeg.2019-095
    倪静, 李杉杉, 韩玉琪, 等. 2019. 加卸荷条件下饱和软黏土蠕变特性试验研究[J]. 工程地质学报, 27(6): 1262-1269. doi: 10.13544/j.cnki.jeg.2017-625
    邵光辉, 刘松玉. 2008. 海相结构软土的次固结研究[J]. 岩土力学, 29(8): 2057-2063. doi: 10.3969/j.issn.1000-7598.2008.08.009
    孙萍萍, 张茂省, 谷天峰, 等. 2020. 吸力可控条件下的北方红黏土蠕变特性[J]. 工程地质学报, 28(3): 500-509. doi: 10.13544/j.cnki.jeg.2019-457
    吴凤彩. 1984. 黏性土的吸附结合水测量和渗流的某些特点[J]. 岩土工程学报, 6(6): 84-93. doi: 10.3321/j.issn:1000-4548.1984.06.008
    熊毅. 1979. 土壤胶体的组成及复合[J]. 土壤通报, (5): 1-8, 28. https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB197905000.htm
    杨可铭. 1981. 浅谈我国有机土的工程分类问题[J]. 哈尔滨建筑工程学院学报, (2): 105-116. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBJ198102008.htm
    余湘娟, 殷宗泽, 董卫军. 2007. 荷载对软土次固结影响的试验研究[J]. 岩土工程学报, 29(6): 913-916. doi: 10.3321/j.issn:1000-4548.2007.06.021
    袁杰, 房营光, 谷任国, 等. 2014. 流变物质含量及其分布对软土蠕变特性影响的试验研究[J]. 岩石力学与工程学报, 33(S1): 2924-2929. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2014S1046.htm
    中华人民共和国国家标准编写组. 2019. 土工试验方法标准(GB/T 50123-2019)[S]. 北京: 中国计划出版社.
    周秋娟, 陈晓平. 2006. 软土次固结特性试验研究[J]. 岩土力学, 27(3): 404-408. doi: 10.3969/j.issn.1000-7598.2006.03.013
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  405
  • HTML全文浏览量:  89
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-26
  • 修回日期:  2021-08-20
  • 刊出日期:  2022-04-25

目录

    /

    返回文章
    返回