基于DFOS的采场围岩变形破坏监测研究进展与展望

孙斌杨 张平松

孙斌杨, 张平松. 2021. 基于DFOS的采场围岩变形破坏监测研究进展与展望[J]. 工程地质学报, 29(4): 985-1001. doi: 10.13544/j.cnki.jeg.2021-0290
引用本文: 孙斌杨, 张平松. 2021. 基于DFOS的采场围岩变形破坏监测研究进展与展望[J]. 工程地质学报, 29(4): 985-1001. doi: 10.13544/j.cnki.jeg.2021-0290
Sun Binyang, Zhang Pingsong. 2021. Research progress and prospect of surrounding rock deformation and failure monitoring in stope based on DFOS[J]. Journal of Engineering Geology, 29(4): 985-1001. doi: 10.13544/j.cnki.jeg.2021-0290
Citation: Sun Binyang, Zhang Pingsong. 2021. Research progress and prospect of surrounding rock deformation and failure monitoring in stope based on DFOS[J]. Journal of Engineering Geology, 29(4): 985-1001. doi: 10.13544/j.cnki.jeg.2021-0290

基于DFOS的采场围岩变形破坏监测研究进展与展望

doi: 10.13544/j.cnki.jeg.2021-0290
基金项目: 

国家自然科学基金 41877268

安徽省重点研发计划项目 1804a0802213

安徽理工大学研究生创新基金项目 2020CX1001

详细信息
    作者简介:

    孙斌杨(1992-), 男, 博士生, 主要从事变形监测与灾害预报研究工作.E-mail: binyangsun1993@163.com

    通讯作者:

    张平松(1971-), 男, 博士, 教授, 博士生导师, 主要从事综合地球物理勘探、矿山及工程多灾害源探测与防治等方向教学与研究工作.E-mail: pszhang@sohu.com

  • 中图分类号: TD325

RESEARCH PROGRESS AND PROSPECT OF SURROUNDING ROCK DEFORMATION AND FAILURE MONITORING IN STOPE BASED ON DFOS

Funds: 

the National Natural Science Foundation of China 41877268

the Key Research and Development Plan Projects of Anhui Province 1804a0802213

the Graduate Innovation Fund Project of Anhui University of Science and Technology 2020CX1001

  • 摘要: 原生地质体在煤岩层采掘条件下将发生变形破坏,相关物理属性(应变场、渗流场、化学场、温度场、地球物理场)随之改变,为了对变形破坏机理进行精细化分析需对场源特征进行重构反演,因此,亟需一种高灵敏度、性能稳定且分布式的监测系统对上述场源信息进行实时动态监测。基于光纤传感测试技术自身的优点(分布式、稳定性高、抗电磁干扰等),可以弥补常规电阻式和振弦式传感器的不足,能够对采场围岩变形进行动态监测,获得的海量数据体为围岩变形场、应力场的恢复和重构提供支撑。详细介绍了布拉格光纤光栅(FBG)、光时域反射技术(OTDR)、布里渊光时域反射技术(BOTDR)、布里渊光时域分析技术(BOTDA)、布里渊光频域分析技术(BOFDA)的工作原理、优缺点及适用条件,阐述了其在顶底板变形破坏、支承压力、断层活化监测、煤柱稳定性监测及破碎岩体注浆加固稳定性监测等方面的研究进展。分析了分布式光纤传感测试技术在当前研究中存在的问题、研究的热点,指出了后期研究的发展趋势,提出建立井上下一体化多参量信息融合监控预警平台,构建多相多场融合判别技术体系,为透明化智慧矿山建设提供数据支撑。
  • 图  1  常见光纤传感技术工作原理图

    a. FBG;b. BOTDR;c. BOTDA;d. BOFDA

    Figure  1.  Working principle diagram of common optical fiber sensing technology

    图  2  基于DFOS监测工作流程

    Figure  2.  Monitoring workflow based on DFOS

    图  3  采场覆岩“横三区”、“竖三带”分布示意图

    1.弯曲下沉带;2.导水裂缝带;3.垮落带;A.煤壁支撑影响区;B.岩层垮落离层区;C.采空区重新压实区

    Figure  3.  Distribution diagram of "horizontal three zones" and "vertical three zones" in overlying strata of stope

    图  4  覆岩光纤监测系统布设示意图

    Figure  4.  Layout diagram of overburden optical fiber monitoring system

    图  5  大倾角煤层顶板活动规律光纤监测研究(柴敬等,2019)

    a.大倾角煤层顶板结构特征;b.主要监测系统;c.大倾角工作面倾向顶板垮落特征;d.大倾角工作面顶板垮落光纤响应特征

    Figure  5.  Research on optical fiber monitoring of roof movement law in steep coal seam(Chai et al., 2019)

    图  6  光缆应变分布示意图(Sun et al., 2021a, 2021b)

    a.工作面在钻孔前方;b.工作面在钻孔后方

    Figure  6.  Schematic diagram of strain distribution of optical cable(Sun et al., 2021a, 2021b)

    图  7  底板岩层受力变形及分区示意图

    a.压缩渐变区;b.压缩区;c.过渡区;d.膨胀区;e.重新压实区

    Figure  7.  Stress and deformation and zoning diagram of floor strata

    图  8  准格尔煤田某矿底板钻孔光纤监测(张平松等,2021)

    a.采区工作面分布图;b. 61303工作面应变分布;c.采区底板破坏深度分布;d.底板扰动影响深度分布

    Figure  8.  Optical fiber monitoring of floor drilling in a mine of Zhungeer coalfield(Zhang et al., 2021)

    图  9  底板突水室内模拟光纤监测(张平松等,2016)

    a.传感光缆布设示意图;b.突水时温度变化及水位上升曲线

    Figure  9.  Simulated optical fiber monitoring in floor water inrush chamber(Zhang et al., 2016)

    图  10  断层面受力分析示意图

    Figure  10.  Stress analysis diagram of fault plane

    图  11  断层活化监测部分成果(张丁丁等,2020)

    a.模型布设示意;b.推进75 cm模型现象;c.断层面F11光纤测试结果

    Figure  11.  Some results of fault activation monitoring (Zhang et al., 2020)

    图  12  断层活化光纤实测结果图(张平松等,2019a)

    Figure  12.  Measured results of fault activated optical fiber (Zhang et al., 2019a)

    图  13  保护煤柱区光纤监测成果(Sun et al., 2020)

    Figure  13.  Optical fiber monitoring results of coal pillar protection area(Sun et al., 2020)

    图  14  工作面支承压力分布示意图

    Figure  14.  Distribution diagram of abutment pressure in working face

    图  15  采场超前支承压力光纤实测特征分析(Zhang et al., 2020a)

    a.监测系统布设;b.超前支承压力分区

    Figure  15.  Analysis of optical fiber measurement characteristics of stope advance abutment pressure(Zhang et al., 2020a)

    图  16  断层破碎带注浆后光纤应变监测结果

    Figure  16.  Optical fiber strain monitoring results of fault fracture zone after grouting

    图  17  岩体-回填材料-光缆(护套-金属加强件-涂覆层-光纤)相互作用示意图

    Figure  17.  Schematic diagram of interaction between rock mass-backfill material-optical cable (sheath metal-reinforcement-coating-optical fiber)

    表  1  采场围岩变形破坏研究方法概述

    Table  1.   Research methods of deformation and failure of surrounding rock in stope

    研究方法 亚类 方法概述 优势 不足
    理论方法 主要包括初期阶段的悬臂梁假说、压力拱假说、铰接岩块假说、预成裂隙假说;中期发展的砌体梁理论、传递岩梁理论;以及现阶段的O-X理论、原位张裂与零位破坏理论、关键层理论、O型圈理论、覆岩破坏学说、“上三带”理论、“下三带”理论、“下四带”理论、宏观应力壳等理论 宏观角度把握围岩体变形破坏特征,为实测等提供基础 难以推广应用到地质复杂型矿井
    经验公式 主要参考《建筑物、水体、铁路及主要井巷煤柱留设与压煤开采规范》推荐的统计经验公式;同时针对特殊地质条件矿井,部分学者也在此基础上推导了一些经验公式 方便快捷,节约人力物力 难以适用于深部、西部化高强度开采矿井,计算误差较大
    模拟方法 数值模拟 主要利用有限差分、有限元、离散元软件(RFPA、SFPA2D、FLAC3D、UDEC、EarthImager3D等)提供的应力、位移、塑性区、裂隙、电阻率等参数,通过分析来正反演计算围岩体运移特征 计算便捷、测试结果清晰可见,且方法科学 难以重构复杂地质条件矿井,且建模参数具有片面性
    物理模拟 主要通过一定的相似比构建二维和三维物理模型,研究采场围岩变形破坏规律 对于进一步认识矿山压力形成机理、寻求有效的岩层控制途径十分有意义 对于富含断层、陷落柱等特殊地质构造的煤岩层难以有效模拟
    现场实测 常规方法 主要利用钻孔注压水、钻孔冲洗液、钻孔电视等对孔内岩层完整度进行观测,以及锚杆、锚索应力计和液压支架阻力等方法 孔内观测成本较低,方便快捷,结果直观 要求成孔质量较高,且人为干扰因素较大
    地球物理方法 主要包括电阻率、地震、声波、瞬变电磁、地质雷达、微震等方法 层析成像技术的引入改变了一孔之见的局面,探测范围增大,且数据质量更加可靠 传感单元存活率较低,易受井下金属等低阻体影响,测试灵敏度有待提高
    新方法 主要利用光纤传感测试技术中的自发布里渊散射技术(BOTDR)进行井下实测,利用光纤光栅及受激布里渊散射技术(BOTDA、BOFDA)进行室内模型试验,获得岩体应变、温度等参数 测量精度更高,弥补以往点式传感的不足,获得分布式数据 测量结果主要为线性应变,传感器与围岩耦合性要求较高
    下载: 导出CSV

    表  2  不同光纤传感技术优缺点对比

    Table  2.   Comparison of advantages and disadvantages of different optical fiber sensing technology

    传感类型 技术分类 技术原理 优势 不足 适用场景
    光纤光栅 FBG 波分复用 测量精度高,可达1 με/0.1℃ 准分布式,易漏失测量点 模拟试验及现场实测
    瑞利散射 OTDR 光时域反射 单端测量,便携,易于测量断点和光损点 受干扰因素较多,精度低 模拟试验及现场实测
    布里渊散射 BOTDR 自发散射 单端测量,无需回路,量程约80 km 精度低 现场实测
    BOTDA 受激散射 双端测量,空间分辨率和精度高于BOTDR 无法测量断点,工程适用性较差 模拟试验及现场实测
    BOFDA 受激散射 双端测量,空间分辨率和精度高于BOTDA 无法测量断点,工程适用性较差 模拟试验及现场实测
    下载: 导出CSV
  • Chai J, Du W G, Zhang D D, et al. 2019. Study on roof activity law in steeply inclined seams based on BOTDA sensing technology[J]. Chinese Journal of Rock Mechanics and Engineering, 38(9): 1809-1818.
    Chai J, Liu Y L, Yuan Q, et al. 2021a. Theory-technology and its application of optical fiber sensing on deformation and failure of mine surrounding rock[J]. Coal Science and Technology, 49(1): 208-217.
    Chai J, Yang Y Y, Ouyang Y B, et al. 2021b. Comparison of optical measurement methods for deformation and failure simulation test of overburden in working face[J]. Journal of China Coal Society, 46(1): 154-163.
    Chai J, Ouyang Y B, Zhang D D, et al. 2020. Theoretical analysis of the mechanical coupling between rock and optical fiber for distributed sensing of overlying strata deformation[J]. Journal of Mining and Strata Control Engineering, 2(3): 73-82.
    Chai J, Peng Y B, Ma W B, et al. 2017. Research on optical fiber sensing monitoring experiment of stress-strain distribution in section coal pillar[J]. Chinese Journal of Underground Space and Engineering, 13(1): 213-219. http://en.cnki.com.cn/Article_en/CJFDTotal-BASE201701030.htm
    Chai J, Qiu B, Li Y, et al. 2012. Simulation experiment of embedded fiber bragg grating monitoring in rock deformation through borehole[J]. Journal of Mining & Safety Engineering, 29(1): 44-47. http://en.cnki.com.cn/Article_en/CJFDTotal-KSYL201201010.htm
    Chai J, Wang F N, Zhang D D, et al. 2018a. Theoretical and experimental study on inclined abutment pressure distribution of working face under the supper thick conglomerate layer[J]. Journal of Xi'an University of Science and Technology, 38(1): 43-50. http://en.cnki.com.cn/Article_en/CJFDTOTAL-XKXB201801008.htm
    Chai J, Xue Z W, Guo R, et al. 2018b. Experimental study of overlying mine strata collapse and its evolution by a distributed optical fiber system[J]. Journal of China University of Mining & Technology, 47(6): 1185-1192.
    Chai J, Wang Z L, Liu W G, et al. 2015a. Monitoring movement laws of overlying key strata for coal mining in similar model[J]. Journal of China Coal Society, 40(1): 35-41. http://www.researchgate.net/publication/282955706_Monitoring_movement_laws_of_overlying_key_strata_for_coal_mining_in_similar_model
    Chai J, Yuan Q, Wang S, et al. 2015b. Detection and representation of mining-induced three horizontal zones based on fiber bragg grating sensing technology[J]. Journal of China University of Mining & technology, 44(6): 971-976. http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGKD201506002.htm
    Chai J, Wei S M, Chang X T, et al. 2004. Monitoring deformation and damage on rock structures with distributed fiber optical sensing[J]. International Journal of Rock Mechanics and Mining Sciences, 41: 1-6.
    Chai J, Yuan Q, Zhang D D, et al. 2016. Experimental study on mining-induced abutment pressure distribution pattern based on FBG sensor[J]. Journal of Xi'an University of Science and Technology, 36(2): 163-170. http://search.cnki.net/down/default.aspx?filename=XKXB201602004&dbcode=CJFD&year=2016&dflag=pdfdown
    Cheng G, Shi B, Zhang P S, et al. 2017. Physical model test study on deformation of overlying strata during coal mining with distributed fiber optic deformation monitoring[J]. Journal of Engineering Geology, 25(4): 926-934. http://en.cnki.com.cn/Article_en/CJFDTOTAL-GCDZ201704005.htm
    Cheng J L, Yu S J. 2000. Simulation experiment on the response of resistivity to deformation and failure of overburden[J]. Chinese Journal of Geophysics, 43(5): 699-706.
    Du W G, Chai J, Zhang D D, et al. 2021. Optical fiber sensing and characterization of water flowing fracture development in mining overburden[J]. Journal of China Coal Society, 46(5): 1565-1575.
    He M C, Xie H P, Peng S P, et al. 2005. Study on rock mechanics in deep mining engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 24(16): 2803-2812. http://www.researchgate.net/publication/283750234_Study_on_rock_mechanics_in_deep_mining_engineering/download
    Hou G Y, Hu T, Li Z X, et al. 2020a. Fiber optic strain characterization of "two zones" deformation of overburden mining based on BOFDA[J]. Journal of Mining and Safety Engineering, 37(2): 224-237. http://www.researchgate.net/publication/343334003_Fiber_strain_characterization_of_two_zones_deformation_of_over-_burden_mining_based_on_BOFDA
    Hou G Y, Hu T, Xu G C, et al. 2020b. Coal mine roadway roof monitoring system based on distributed optical fiber technology[J]. Industry and Mine Automation, 46(1): 1-6.
    Hu T, Hou G Y, Li Z X. 2018. The field monitoring experiment of the roof strata movement in coal mining based on DFOS[J]. Sensors, 20(5): 1318. http://www.researchgate.net/publication/339648159_The_Field_Monitoring_Experiment_of_the_Roof_Strata_Movement_in_Coal_Mining_Based_on_DFOS
    Hu X J, Li W P, Cao D T, et al. 2012. Index of multiple factors and expected height of fully mechanized water flowing fractured zone[J]. Journal of China Coal Society, 37(4): 613-620. http://www.ingentaconnect.com/content/jccs/jccs/2012/00000037/00000004/art00014
    Hua X Z, Yang P. 2018. Floor deformation dynamic evolution of gob-side entry retaining with large section in deep mine[J]. Journal of China University of Mining & Technology, 47(3): 494-501. http://en.cnki.com.cn/Article_en/CJFDTotal-ZGKD201803005.htm
    Huang Q H. 2009. Simulation of clay aquifuge stability of water conservation mining in shallow-buried coal seam[J]. Chinese Journal of Rock Mechanics and Engineering, 28(5): 987-992. http://d.wanfangdata.com.cn/periodical/yslxygcxb200905015
    Ji W L, Xi L T, Chai J. 2021. LSSVM method of missing data imputation of optical fiber monitoring with mining-induced overburden[J]. Journal of Xi'an University of Science and Technology, 41(1): 160-171.
    Jiao H R, Shi B, Wei G Q, et al. 2018. Study on influence factors of temperature coefficient of sensing optical fiber based on BOFDA[J]. Journal of Electronic Measurement and Instrumentation, 32(1): 73-80. http://en.cnki.com.cn/Article_en/CJFDTotal-DZIY201801010.htm
    Li H J, Zhu H H, Shi B, et al. 2018. Research progress and prospect of DFOS-based ground deformation monitoring technology[J]. Journal of Engineering Geology, 26(S): 397-408. http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGHJ201803052.htm
    Miao X X, Chen R H, Pu H, et al. 2005. Analysis of breakage and collapse of thick key strata around coal face[J]. Chinese Journal of Rock Mechanics and Engineering, 24(8): 1290-1296. http://www.oalib.com/paper/1485892
    Moffat R A, Beltran J F, Herrera R. 2015. Applications of BOTDR fiber optics to the monitoring of underground structures[J]. Geomechanics and Engineering, 9(3): 397-414. doi: 10.12989/gae.2015.9.3.397
    Naruse H, Uehara H, Deguchi T, et al. 2007. Application of a distributed fibre optic strain sensing system to monitoring changes in the state of an underground mine[J]. Measurement Science and Technology, 18(10): 3202-3210. doi: 10.1088/0957-0233/18/10/S23
    Ning D Y. 2013. Development of monitoring and early warning fiber sensor of water inrush from coal seam floor[J]. Journal of Applied Optics, 34(4): 718-722. http://en.cnki.com.cn/Article_en/CJFDTOTAL-YYGX201304039.htm
    Piao C D, Shi B, Wei G Q, et al. 2015. BOTDA distributed measurement and analysis of mining overburden separation[J]. Journal of Mining & Safety Engineering, 32(3): 376-381. http://www.researchgate.net/publication/282275184_BOTDA_distributed_measurement_and_analysis_of_mining_overburden_separation
    Qian M G, Miao X X, Li L J. 1995. Mechanism for the fracture behaviors of main floor in longwall mining[J]. Chinese Journal of Geotechnical Engineering, 17(6): 55-62. http://www.researchgate.net/publication/284871186_Mechanism_for_the_fracture_behaviours_of_main_floor_in_longwall_mining
    Shi B. 2017. On the ground sensing system and ground sensing engineering[J]. Journal of Engineering Geology, 32(1): 73-80. http://www.zhangqiaokeyan.com/academic-journal-cn_journal-engineering-geology_thesis/0201253352861.html
    Shi L Q, Han J. 2005. Theory and practice of dividing coal mining area floor into four-zone[J]. Journal of China Coal Society, 34(1): 16-23. http://www.cnki.com.cn/Article/CJFDTotal-ZGKD200501004.htm
    Sun B Y, Zhang P S, Lu H F. 2020. Study on reasonable size of coal and rock pillar in dynamic pressure roadway segment of fully mechanized[J]. Advances in Civil Engineering, 2020: 8822175. http://www.researchgate.net/publication/346172212_Study_on_Reasonable_Size_of_Coal_and_Rock_Pillar_in_Dynamic_Pressure_Roadway_Segment_of_Fully_Mechanized_Face_in_Deep_Shaft
    Sun B Y, Zhang P S, Wu R X, et al. 2021a. Improvement of upper limit of mining under an aquifer of a super thick unconsolidated layer in Huainan based on multi-physics field monitoring[J]. Exploration Geophysics, 52(2): 150-169. doi: 10.1080/08123985.2020.1780116
    Sun B Y, Zhang P S, Wu R X, et al. 2021b. Research on the overburden deformation and migration law in deep and extra-thick coal seam mining[J]. Journal of Applied Geophysics, 190: 104337. doi: 10.1016/j.jappgeo.2021.104337
    Wei C Q, Deng Q L. 2020. Research on application of distributed optical fiber monitoring technology for subgrade settlement[J]. Journal of Engineering Geology, 28(5): 1091-1098.
    Wu H Y, Zhu H H, Zhu B, et al. 2019. Research progress and prospect of DFOS-based underground pipeline monitoring[J]. Journal of Zhejiang University(Engineering Science), 53(3): 1-14. http://en.cnki.com.cn/Article_en/CJFDTotal-ZDZC201906005.htm
    Xu J L, Qian M G, Jin H W. 2004. Study and application of bed separation distribution and development in the process of strata movement[J]. Chinese Journal of Geotechnical Engineering, 26(5): 632-636. http://en.cnki.com.cn/Article_en/CJFDTOTAL-YTGC200405011.htm
    Xie G X. 2005. Mechanical characteristics of fully mechanized top-coal caving face and surrounding rock stress shell[J]. Journal of China Coal Society, 30(3): 309-313. http://d.old.wanfangdata.com.cn/Periodical/mtxb200503009
    Yuan L. 2017. Scientific conception of precision coal mining[J]. Journal of China Coal Society, 42(1): 1-7. http://www.researchgate.net/publication/316683672_Scientific_conception_of_precision_coal_mining
    Yuan L, Jiang Y D, He X Q, et al. 2018. Research progress of precise risk accurate identification and monitoring early warning on typical dynamic disasters in coal mine[J]. Journal of China Coal Society, 43(2): 306-318. http://www.researchgate.net/publication/327768111_Research_progress_of_precise_risk_accurate_identification_and_monitoring_early_warning_on_typical_dynamic_disasters_in_coal_mine
    Yuan L, Zhang P S. 2020. Framework and thinking of transparent geological conditions for precise mining of coal[J]. Journal of China Coal Society, 45(7): 2346-2356.
    Zhang C C, Shi B, Zhu H H, et al. 2019. Theoretical analysis of mechanical coupling between soil and fiber optic strain sensing cable for distributed monitoring of ground settlement[J]. Chinese Journal of Geotechnical Engineering, 41(9): 1670-1678. http://en.cnki.com.cn/Article_en/CJFDTotal-YTGC201909012.htm
    Zhang D D, Chai J, Li Y, et al. 2015. Strain transfer function of embedded fiber bragg grating sensors for unconsolidated layer settlement deformation detector and its application[J]. Chinese Journal of Rock Mechanics and Engineering, 34(S1): 3289-3297.
    Zhang D D, Li S J, Zhang X, et al. 2020. Experimental study on mining fault activation characteristics by a distributed optical fiber system[J]. Journal of Mining and Strata Control Engineering, 2(1): 013018.
    Zhang D, Wang J C, Zhang P S, et al. 2017. Internal strain monitoring for coal mining similarity model based on distributed fiber optical sensing[J]. Measurement, 87: 234-241. http://www.sciencedirect.com/science/article/pii/S0263224116306546
    Zhang D, Zhang P S, Shi B, et al. 2015. Monitoring and analysis of overburden deformation and failure using distributed fiber optic sensing[J]. Chinese Journal of Geotechnical Engineering, 37(5): 952-957. http://en.cnki.com.cn/Article_en/CJFDTOTAL-YTGC201505029.htm
    Zhang P S, Hu X W, Liu S D. 2011. Study of dynamic detection simulation of overburden failure in model work-face[J]. Chinese Journal of Rock Mechanics and Engineering, 30(1): 78-83. http://d.wanfangdata.com.cn/Periodical/yslxygcxb201101007
    Zhang P S, Liu C, Ou Y C, et al. 2021. Comprehensive testing research on floor damage characteristics of mining extra-thick seam in Jungar Coalfield[J]. Coal Geology & Exploration, 49(1): 263-269.
    Zhang P S, Liu S D, Wu R X. 2004. Observation of overburden failure of coal seam by CT of seismic wave[J]. Chinese Journal of Rock Mechanics and Engineering, 23(15): 2510-2513. http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSLX200415004.htm
    Zhang P S, Lu H F, Han B W, et al. 2019a. Monitoring and analysis of deformation characteristics of fault structure under mining condition[J]. Journal of Mining & safety Engineering, 36(2): 351-356.
    Zhang P S, Zhai E F, Cheng A M, et al. 2019b. Optical fiber monitoring study on characteristics of deformation in floor of deep and thick coal seam during mining[J]. Chinese Journal of Underground Space and Engineering, 15(4): 1197-1203.
    Zhang P S, Zhang D, Sun B Y, et al. 2019c. Optical fiber monitoring technology for evolution characteristic of rock stratum deformation and failure in space of mining field[J]. Journal of Engineering Geology, 27(2): 260-266. http://www.zhangqiaokeyan.com/academic-journal-cn_journal-engineering-geology_thesis/0201270243485.html
    Zhang P S, Sun B Y. 2017. Development status of the detection technology for coal-seam stope floor damage[J]. Advances in Earth Science, 32(6): 577-588. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXJZ201706003.htm
    Zhang P S, Sun B Y. 2020a. Distribution characteristics of the advance abutment pressure in a deep stope[J]. Journal of Geophysics and Engineering, 17(4): 686-699. http://www.researchgate.net/publication/341828229_Distribution_characteristics_of_the_advance_abutment_pressure_in_a_deep_stope/download
    Zhang P S, Xu S A, Guo L Q, et al. 2020b. Prospect and progress of deformation and failure monitoring technology of surrounding rock in stope[J]. Coal Science and Technology, 48(3): 14-35.
    Zhang P S, Sun B Y, Xu S A. 2016. Simulation research on BOTDR-based monitoring over temperature field of water inrushing from coal floor[J]. Journal of Chongqing Jiaotong University(Natural Science), 35(5): 23-27. http://en.cnki.com.cn/Article_en/CJFDTOTAL-CQJT201605007.htm
    Zhang Y J, Zhang H X, Chen P P. 2008. Visual exploration of fissure field of overburden and rock[J]. Journal of China Coal Society, 33(11): 1216-1219. http://www.researchgate.net/publication/294857499_Visual_exploration_of_fissure_field_of_overburden_and_rock
    Zhao Y X, Wang H, Lu Z G, et al. 2018. Characteristics of tremor time-space evolution and Coulomb stress distribution along the faul during workface excavation[J]. Journal of China Coal Society, 43(2): 340-347. http://www.researchgate.net/publication/324978066_Characteristics_of_tremor_time-space_evolution_and_Coulomb_stress_distribution_along_the_fault_during_workface_excavation
    Zhu Q W, Xin T Q, Sun X Y. 2016. Displacement monitoring precision of similarly model with close-range photogrammetry system[J]. Coal Mining, 21(2): 106-109. http://en.cnki.com.cn/Article_en/CJFDTOTAL-MKKC201602028.htm
    柴敬, 杜文刚, 张丁丁, 等. 2019. 基于BOTDA技术感测的大倾角煤层顶板活动规律研究[J]. 岩石力学与工程学报, 38(9): 1809-1818. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201909009.htm
    柴敬, 刘永亮, 袁强, 等. 2021a. 矿山围岩变形与破坏光纤感测理论技术及应用[J]. 煤炭科学技术, 49(1): 208-217. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ202101016.htm
    柴敬, 杨玉玉, 欧阳一博, 等. 2021b. 采场覆岩变形破坏模拟试验的光测方法对比[J]. 煤炭学报, 46(1): 154-163. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202101015.htm
    柴敬, 欧阳一博, 张丁丁, 等. 2020. 采场覆岩变形分布式光纤监测岩体-光纤耦合性分析[J]. 采矿与岩层控制工程学报, 2(3): 73-82. https://www.cnki.com.cn/Article/CJFDTOTAL-MKKC202003009.htm
    柴敬, 彭钰博, 马伟超, 等. 2017. 煤柱应力-应变分布的光纤监测试验研究[J]. 地下空间与工程学报, 13(1): 213-219. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201701030.htm
    柴敬, 邱标, 李毅, 等. 2012. 钻孔植入光纤Bragg光栅检测岩层变形的模拟实验[J]. 采矿与安全工程学报, 29(1): 44-47. doi: 10.3969/j.issn.1673-3363.2012.01.008
    柴敬, 王丰年, 张丁丁, 等. 2018a. 巨厚砾岩层下采场支承压力分布的理论及试验研究[J]. 西安科技大学学报, 38(1): 43-50. https://www.cnki.com.cn/Article/CJFDTOTAL-XKXB201801008.htm
    柴敬, 薛子武, 郭瑞, 等. 2018b. 采场覆岩垮落形态与演化的分布式光纤检测试验研究[J]. 中国矿业大学学报, 47(6): 1185-1192. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201806004.htm
    柴敬, 汪志力, 刘文岗, 等. 2015a. 采场上覆关键层运移的模拟实验检测[J]. 煤炭学报, 40(1): 35-41. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201501005.htm
    柴敬, 袁强, 王帅, 等. 2015b. 长壁工作面覆岩采动"横三区"光纤光栅检测与表征[J]. 中国矿业大学学报, 44(6): 971-976. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201506002.htm
    柴敬, 袁强, 张丁丁, 等. 2016. 基于光纤Bragg光栅的采动支承压力分布试验研究[J]. 西安科技大学学报, 36(2): 163-170. https://www.cnki.com.cn/Article/CJFDTOTAL-XKXB201602004.htm
    陈炎光, 陆士良. 1994. 中国煤矿采场围岩控制[M]. 徐州: 中国矿业大学出版社.
    程刚, 施斌, 张平松, 等. 2017. 采动覆岩变形分布式光纤物理模型试验研究[J]. 工程地质学报, 25(4): 926-934. doi: 10.13544/j.cnki.jeg.2017.04.005
    程久龙, 于师建. 2000. 覆岩变形破坏电阻率响应特征的模拟实验研究[J]. 地球物理学报, 43(5): 699-706. doi: 10.3321/j.issn:0001-5733.2000.05.014
    杜文刚, 柴敬, 张丁丁, 等. 2021. 采动覆岩导水裂隙发育光纤感测与表征模型试验研究[J]. 煤炭学报, 46(5): 1565-1575. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202105020.htm
    国家煤炭工业局. 2000. 建筑物、水体、铁路及主要井巷煤柱留设与压煤开采规程[M]. 北京: 煤炭工业出版社.
    何满潮, 谢和平, 彭苏萍, 等. 2005. 深部开采岩体力学研究[J]. 岩石力学与工程学报, 24(16): 2803-2812. doi: 10.3321/j.issn:1000-6915.2005.16.001
    侯公羽, 胡涛, 李子祥, 等. 2020a. 基于BOFDA的覆岩采动"两带"变形表征研究[J]. 采矿与安全工程学报, 37(2): 224-237. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL202002002.htm
    侯公羽, 胡涛, 徐桂城, 等. 2020b. 基于分布式光纤技术的煤矿巷道顶板监测系统[J]. 工矿自动化, 46(1): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-MKZD202001001.htm
    胡小娟, 李文平, 曹丁涛, 等. 2012. 综采导水裂隙带多因素影响指标研究与高度预计[J]. 煤炭学报, 37(4): 613-620. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201204016.htm
    华心祝, 杨朋. 2018. 深井大断面沿空留巷底板变形动态演化特征研究[J]. 中国矿业大学学报, 47(3): 494-501. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201803005.htm
    黄庆享. 2009. 浅埋煤层保水开采隔水层稳定性的模拟研究[J]. 岩石力学与工程学报, 28(5): 987-992. doi: 10.3321/j.issn:1000-6915.2009.05.015
    冀汶莉, 郗刘涛, 柴敬. 2021. 采场覆岩光纤监测数据LSSVM填补方法[J]. 西安科技大学学报, 41(1): 160-171. https://www.cnki.com.cn/Article/CJFDTOTAL-XKXB202101022.htm
    焦浩然, 施斌, 魏广庆, 等. 2018. 基于BOFDA的感测光纤温度系数影响因素研究[J]. 电子测量与仪器学报, 32(1): 73-80. https://www.cnki.com.cn/Article/CJFDTOTAL-DZIY201801010.htm
    李豪杰, 朱鸿鹄, 施斌, 等. 2018. 基于DFOS的地面变形监测技术研究进展与展望[J]. 工程地质学报, 26(S): 397-408. doi: 10.13544/j.cnki.jeg.2018067
    刘瑜. 2018. 陕北侏罗系煤层开采导水裂缝带动态演化规律研究及应用[D]. 徐州: 中国矿业大学.
    缪协兴, 陈荣华, 浦海, 等. 2005. 采场覆岩厚关键层破断与冒落规律分析[J]. 岩石力学与工程学报, 24(8): 1290-1296. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200508004.htm
    宁殿艳. 2013. 煤层底板突水监测预警光纤应变传感器的研制[J]. 应用光学, 34(4): 718-722. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGX201304039.htm
    朴春德, 施斌, 魏广庆, 等. 2015. 采动覆岩变形BOTDA分布式测量及离层分析[J]. 采矿与安全工程学报, 32(3): 376-381. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201503005.htm
    钱鸣高, 缪协兴, 黎良杰. 1995. 采场底板岩层破断规律的理论研究[J]. 岩土工程学报, 17(6): 55-62. doi: 10.3321/j.issn:1000-4548.1995.06.008
    钱鸣高, 石平五, 许家林. 2010. 矿山压力与岩层控制[M]. 徐州: 中国矿业大学出版社.
    施斌. 2017. 论大地感知系统与大地感知工程[J]. 工程地质学报, 25(3): 582-591. doi: 10.13544/j.cnki.jeg.2017.03.002
    施龙青, 韩进. 2005. 开采煤层底板"四带"划分理论与实践[J]. 煤炭学报, 34(1): 16-23. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD200501004.htm
    韦超群, 邓清禄. 2020. 基于分布式光纤技术的路基沉降监测应用研究[J]. 工程地质学报, 28(5): 1091-1098. doi: 10.13544/j.cnki.jeg.2020-317
    吴海颖, 朱鸿鹄, 朱宝, 等. 2019. 基于DFOS的地下管线监测研究进展及展望[J]. 浙江大学学报(工学版), 53(3): 1-14.
    许家林, 钱鸣高, 金宏伟. 2004. 岩层移动离层演化规律及其应用研究[J]. 岩土工程学报, 26(5): 632-636. doi: 10.3321/j.issn:1000-4548.2004.05.012
    谢广祥. 2005. 综放工作面及其围岩宏观应力壳力学特征[J]. 煤炭学报, 30(3): 309-313. doi: 10.3321/j.issn:0253-9993.2005.03.009
    袁亮. 2017. 煤炭精准开采科学构想[J]. 煤炭学报, 42(1): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201701001.htm
    袁亮, 姜耀东, 何学秋, 等. 2018. 煤矿典型动力灾害风险精准判识及监控预警关键技术研究进展[J]. 煤炭学报, 43(2): 306-318. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201802002.htm
    袁亮, 张平松. 2020. 煤炭精准开采透明地质条件的重构与思考[J]. 煤炭学报, 45(7): 2346-2356. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202007003.htm
    袁强. 2017. 采动覆岩变形的分布式光纤检测与表征模拟试验研究[D]. 西安: 西安科技大学.
    张诚成, 施斌, 朱鸿鹄, 等. 2019. 地面沉降分布式光纤监测土-缆耦合性分析[J]. 岩土工程学报, 41(9): 1670-1678. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201909012.htm
    张丁丁, 柴敬, 李毅, 等. 2015. 松散层沉降光纤光栅监测的应变传递及其工程应用[J]. 岩石力学与工程学报, 34(S1): 3289-3297. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2015S1085.htm
    张丁丁, 李淑军, 张曦, 等. 2020. 分布式光纤监测的采动断层活化特征实验研究[J]. 采矿与岩层控制工程学报, 13(1): 013018. https://www.cnki.com.cn/Article/CJFDTOTAL-MKKC202001010.htm
    张丹, 张平松, 施斌, 等. 2015. 采动覆岩变形与破坏的分布式光纤监测与分析[J]. 岩土工程学报, 37(5): 952-957. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201505029.htm
    张平松, 胡雄武, 刘盛东. 2011. 采煤面覆岩变形破坏动态测试模拟研究[J]. 岩石力学与工程学报, 30(1): 78-83. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201101008.htm
    张平松, 刘畅, 欧元超, 等. 2021. 准格尔煤田特厚煤层开采底板破坏特征综合测试研究[J]. 煤田地质与勘探, 49(1): 263-269. doi: 10.3969/j.issn.1001-1986.2021.01.029
    张平松, 刘盛东, 吴荣新. 2004. 地震波CT技术探测煤层上覆岩层破坏规律[J]. 岩石力学与工程学报, 23(15): 2510-2513. doi: 10.3321/j.issn:1000-6915.2004.15.005
    张平松, 鲁海峰, 韩必武, 等. 2019a. 采动条件下断层构造的变形特征实测与分析[J]. 采矿与安全工程学报, 36(2): 351-356. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201902018.htm
    张平松, 翟恩发, 程爱民, 等. 2019b. 深厚煤层开采底板变形特征的光纤监测研究[J]. 地下空间与工程学报, 15(4): 1197-1203. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201904031.htm
    张平松, 张丹, 孙斌杨, 等. 2019c. 巷道断面空间岩层变形与破坏演化特征光纤监测研究[J]. 工程地质学报, 27(2): 260-266. doi: 10.13544/j.cnki.jeg.2018-070
    张平松, 孙斌杨. 2017. 煤层回采工作面底板破坏探查技术的发展现状[J]. 地球科学进展, 32(6): 577-588. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201706003.htm
    张平松, 孙斌杨, 许时昂. 2016. 基于BOTDR的煤层底板突水温度场监测模拟研究[J]. 重庆交通大学学报(自然科学版), 35(5): 23-27. https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT201605007.htm
    张平松, 许时昂, 郭立全, 等. 2020. 采场围岩变形与破坏监测技术研究进展及展望[J]. 煤炭科学技术, 48(3): 14-35. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ202003002.htm
    张玉军, 张华兴, 陈佩佩. 2008. 覆岩及采动岩体裂隙场分布特征的可视化探测[J]. 煤炭学报, 33(11): 1216-1219. doi: 10.3321/j.issn:0253-9993.2008.11.004
    赵毅鑫, 王浩, 卢志国, 等. 2018. 开采扰动下断层面库仑应力及诱发矿震时空演化特征[J]. 煤炭学报, 43(2): 340-347. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201802006.htm
    朱庆伟, 信泰琦, 孙学阳. 2016. 近景摄影测量系统在相似模型位移监测中精度分析[J]. 煤矿开采, 21(2): 106-109. https://www.cnki.com.cn/Article/CJFDTOTAL-MKKC201602028.htm
  • 加载中
图(17) / 表(2)
计量
  • 文章访问数:  129
  • HTML全文浏览量:  103
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-27
  • 修回日期:  2021-07-15
  • 网络出版日期:  2021-09-03
  • 刊出日期:  2021-09-03

目录

    /

    返回文章
    返回