基于离散元模拟的巨厚煤层分层开采覆岩裂隙演化分形特征

陈凯 葛颖 张全 陈砺锋 刘智奇

陈凯, 葛颖, 张全, 等. 2021. 基于离散元模拟的巨厚煤层分层开采覆岩裂隙演化分形特征[J]. 工程地质学报, 29(4): 1113-1120. doi: 10.13544/j.cnki.jeg.2021-0299
引用本文: 陈凯, 葛颖, 张全, 等. 2021. 基于离散元模拟的巨厚煤层分层开采覆岩裂隙演化分形特征[J]. 工程地质学报, 29(4): 1113-1120. doi: 10.13544/j.cnki.jeg.2021-0299
Chen Kai, Ge Ying, Zhang Quan, et al. 2021. Discrete element simulation for crack fractal evolution laws associated with slicing mining in super thick coal stratum[J]. Journal of Engineering Geology, 29(4): 1113-1120. doi: 10.13544/j.cnki.jeg.2021-0299
Citation: Chen Kai, Ge Ying, Zhang Quan, et al. 2021. Discrete element simulation for crack fractal evolution laws associated with slicing mining in super thick coal stratum[J]. Journal of Engineering Geology, 29(4): 1113-1120. doi: 10.13544/j.cnki.jeg.2021-0299

基于离散元模拟的巨厚煤层分层开采覆岩裂隙演化分形特征

doi: 10.13544/j.cnki.jeg.2021-0299
基金项目: 

新疆维吾尔自治区自然科学基金 2017D01C067

详细信息
    作者简介:

    陈凯(1985-),男,博士生,副教授,主要从事工程地质方面的科研与教学工作. E-mail:chenk412@126.com

    通讯作者:

    陈凯(1985-),男,博士生,副教授,主要从事工程地质方面的科研与教学工作. E-mail:chenk412@126.com

  • 中图分类号: P642.3

DISCRETE ELEMENT SIMULATION FOR CRACK FRACTAL EVOLUTION LAWS ASSOCIATED WITH SLICING MINING IN SUPER THICK COAL STRATUM

Funds: 

the Natural Science Foundation of Xinjiang Uygur Autonomous Region 2017D01C067

  • 摘要: 为了定量评价西部矿区巨厚煤层分层开采过程中弱胶结覆岩采动裂隙网络的发育特征,通过分形几何理论和UDEC离散元数值模拟相结合的方法分析了采动覆岩裂隙的分形演化规律。研究结果表明:西部矿区巨厚煤层在分层开采条件下覆岩发育和扩展具有良好的自相似性,分形维数D在0.461~1.488之间;巨厚煤层在分层开采条件下覆岩裂隙分形演化规律可以划分为快速升维阶段、快速降维阶段、平稳稳维阶段、周期性变维阶段等4个阶段,各阶段分形维数D与开采次数分别满足对数关系、线性关系以及二次函数关系;巨厚煤层在分层开采条件下,分形维数D拟合曲线表现出了高度的相似性,具有一定的周期性,均呈幂函数关系。研究结果可以对西部矿区的安全开采和水资源的保护提供科学依据和技术参考。
  • 图  1  研究区水文地质剖面图

    Figure  1.  Hydrogeological profile of the study area

    图  2  数值模型简图

    Figure  2.  Simplified numerical model

    图  3  1101工作面开采结束时覆岩裂隙分布特征

    Figure  3.  Fracture distribution of overburden in the second layer mining

    图  4  裂隙发育图像预处理过程

    a. 裂隙发育图像(部分);b. 黑白位图处理(除噪前);c. 黑白位图处理(除噪后)

    Figure  4.  Pre-processing of fissures image

    图  5  采动覆岩裂隙发育分布特征

    a. 第1分层开采结束;b. 第2分层开采结束

    Figure  5.  Development and distribution characteristics of cracks in overburden rock caused by mining

    图  6  开采全过程分形维数与开采次数关系曲线

    Figure  6.  Fractal dimension vs. mining times in whole mining procedure

    图  7  各阶段分形维数与开采次数曲线

    a. 第1阶段;b. 第2阶段;c. 第3阶段;d. 第4阶段

    Figure  7.  Fitting curves between fractal dimension and mining times in every stage

    图  8  开采全过程分形维数与开采层数关系曲线

    Figure  8.  Fitting curves between fractal dimension and number of mining layers in whole mining procedure

    表  1  煤岩层力学参数表

    Table  1.   Mechanical parameters of coal and rock strata

    岩性 弹性模量/MPa 泊松比 黏聚力/MPa 内摩擦角/(°)
    砾岩 5.0×103 0.23 4.00 43.0
    细砂岩 2.2×103 0.21 0.56 42.7
    粉砂岩 2.8×103 0.22 1.22 37.6
    泥岩 3.0×103 0.38 1.67 34.4
    3.1×103 0.26 1.55 35.8
    下载: 导出CSV

    表  2  采动覆岩裂隙的分形维数计算

    Table  2.   Calculation of fractal dimension of cracks in overburden rock cracks caused by mining

    序号 第1分层/m 分形维数D 相关系数R2 序号 第2分层/m 分形维数D 相关系数R2
    1 12 0.461 0.617 31 12 1.143 0.960
    2 24 0.685 0.704 32 24 1.146 0.960
    3 36 0.734 0.777 33 36 1.148 0.960
    4 48 0.801 0.823 34 48 1.155 0.960
    5 60 0.934 0.855 35 60 1.162 0.960
    6 72 0.971 0.881 36 72 1.211 0.958
    7 84 1.012 0.892 37 84 1.217 0.958
    8 96 0.888 0.948 38 96 1.236 0.958
    9 108 0.985 0.953 39 108 1.246 0.957
    10 120 1.043 0.953 40 120 1.247 0.957
    11 132 1.071 0.953 41 132 1.360 0.953
    12 144 1.112 0.953 42 144 1.372 0.953
    13 156 1.185 0.950 43 156 1.396 0.953
    14 168 1.230 0.950 44 168 1.416 0.952
    15 180 1.292 0.949 45 180 1.422 0.952
    16 192 1.298 0.949 46 192 1.428 0.952
    17 204 1.285 0.950 47 204 1.433 0.952
    18 216 1.302 0.950 48 216 1.454 0.952
    19 228 1.275 0.952 49 228 1.448 0.952
    20 240 1.267 0.953 50 240 1.433 0.953
    21 252 1.261 0.955 51 252 1.350 0.955
    22 264 1.221 0.957 52 264 1.337 0.956
    23 276 1.200 0.958 53 276 1.349 0.956
    24 288 1.170 0.959 54 288 1.344 0.956
    25 300 1.117 0.961 55 300 1.321 0.958
    26 312 1.152 0.958 56 312 1.456 0.955
    27 324 1.136 0.959 57 324 1.459 0.955
    28 336 1.149 0.958 58 336 1.478 0.954
    29 348 1.138 0.960 59 348 1.487 0.954
    30 360 1.140 0.961 60 360 1.488 0.954
    下载: 导出CSV
  • Guan W M. 2018. Study on movement laws of roof strata and its control in slicing mining extra-thick coal seam in Dajing mining area[D]. Xuzhou: China University of Mining and Technology.
    Han J, Zhang H W, Gao Z Y, et al. 2016. Failure height of weak overburden by layered fully-mechanized mining in extremely thick coal seam[J]. Journal of Mining & Safety Engineering, 33 (2): 226-230, 237. https://www.researchgate.net/publication/318326924_Structure_and_deformation_measurements_of_shallow_overburden_during_top_coal_caving_longwall_mining
    Hu S R, Lin L N, Huang C, et al. 2011. Distribution and genetic model of extra-thick coal seams[J]. Coal Geology of China, 23 (1): 1-5. http://d.wanfangdata.com.cn/periodical/zgmtdz201101002
    Kang T H, Chai Z Y, Li Y B, et al. 2007. Study on physical simulation of full-seam mining for a 20m very thick and medium hard seam by sub-level caving mining with high bottom cutting height[J]. Chinese Journal of Rock Mechanics and Engineering, 26 (5): 1065-1072. http://www.cqvip.com/QK/96026X/200705/25633838.html
    Li G S, Zeng Q, Zhao L H, et al. 2018. Simulation of the impact of super-thick coal seam mining on overlying aquifers: A case study of Dajing mining area of Eastern Junggar coalfield[J]. China Mining Magazine, 27 (3): 104-109. http://en.cnki.com.cn/Article_en/CJFDTotal-ZGKA201803021.htm
    Li S G. 2004. Fractal[M]. Beijing: Higher Education Press.
    Li Z H, Ding X P, Cheng Z H. 2010. Research on fractal characteristics of overlying strata crack evolution in coal seam with thin bedrock[J]. Journal of Mining & Safety Engineering, 27 (4): 576-580. http://www.researchgate.net/publication/289907869_Research_on_fractal_characteristics_of_overlying_strata_crack_evolution_in_coal_seam_with_thin_bedrock
    Liu T Q. 1995. Influence of mining activities on mine rock mass and control engineering[J]. Journal of China Coal Society, 20 (1): 1-5. http://www.sciencedirect.com/science/article/pii/0148906295991909
    Lou F, Wang Z, Jin S K, et al. 2017. Study on failure law of overlying strata in layered mining of deeply buried extra thick coal seam[J]. Coal Technology, 36 (7): 34-37. http://en.cnki.com.cn/Article_en/CJFDTotal-MTJS201707013.htm
    Peng R D, Xie H P, Ju Y. 2004. Compu-tation method of fractal dimension for 2-D digital image[J]. Journal of China University of Mining & Technology, 33 (1): 19-24. http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGKD200401004.htm
    Qian M G, Miu X X, Xu J L. 1996. Theoretical study of key stratum in ground control[J]. Journal of China Coal Society, 21 (3): 2-7. http://www.researchgate.net/publication/285467949_Theoretical_study_of_key_stratum_in_ground_control/amp
    Qiao X L. 2017. Failure characteristic and fracture evolution law of overburden of thick coal in fully mechanized sub-level caving mining[J]. Journal of Engineering Geology, 25 (3): 858-866. http://www.researchgate.net/publication/322558374_Failure_Characteristic_and_Fracture_Evolution_Law_of_Overburden_of_Thick_Coal_in_Fully_Mechanized_Sub-level_Caving_Mining
    Qin D D. 2020. Evolution mechanism and control of overburden structure for gently inclined ultra-thick coal seam multi-layer mining in Xinjiang East Junggar mining area[D]. Xuzhou: China University of Mining and Technology.
    Ren Q H, Xu Z Y, Chen C. 2021. Overburden structure and rock pressure law of fully-mechanized top coal caving stope in extra-thick coal seam[J]. Coal Engineering, 53 (1): 79-83. https://www.sciencedirect.com/science/article/pii/S2095268614000548
    Sui W H, Liu J W, Gao B L, et al. 2019. A review on disaster mechanism of quicksand with a high potential energy due to mining and its prevention and control[J]. Journal of China Coal Society, 44 (8): 2419-2426. http://en.cnki.com.cn/Article_en/CJFDTotal-MTXB201908017.htm
    Sui W H. 1994. Theory and practice of engineering geological predication of mining induced overburden failure[J]. Journal of Engineering Geology, 2 (2): 29-37. http://en.cnki.com.cn/Article_en/CJFDTOTAL-GCDZ402.003.htm
    Tian C D. 2016. Study on movement laws of overlying strata and surface deformation of extra-thick coal seam mining[D]. Xuzhou: China University of Mining and Technology.
    Wang J H. 2013. Key technology for fully-mechanized top coal caving with large mining height in extra-thick coal seam[J]. Journal of China Coal Society, 38 (12): 2089-2098. http://www.ingentaconnect.com/content/jccs/jccs/2013/00000038/00000012/art00001
    Xu M T. 2014. Study on movement laws of overlying strata and its control of extra-thick coal seam mining in Xinjiang Region[D]. Xuzhou: China University of Mining and Technology.
    Yang Q, Han D X. 1979. Coalfield geology of China(Volume 1)[M]. Beijing: Coal Industry Press.
    Zeng Q, Li G S, Yang J, et al. 2019. Study on the permeability of overlying aquifer associated with the mining of the super-thick coal seam in Dajing mining area of eastern Junggar coalfield[J]. China Mining Magazine, 28 (5): 116-124. http://en.cnki.com.cn/Article_en/CJFDTotal-ZGKA201905024.htm
    Zhang H W, Rong H, Han J, et al. 2014. Application of determining overburden failure range in complex giant thick coal seam by EH-4 magnetotelluric method[J]. Progress in Geophysics, 29 (5): 2307-2313. http://www.cnki.com.cn/Article/CJFDTotal-DQWJ201405047.htm
    Zhu T. 2010. Study on the surrounding rock control theory and technology of soft seam in high mining height longwall face[D]. Taiyuan: Taiyuan University of Technology.
    管伟明. 2018. 大井矿区巨厚煤层多分层开采覆岩活动规律及控制[D]. 徐州: 中国矿业大学.
    韩军, 张宏伟, 高照宇, 等. 2016. 巨厚煤层软弱覆岩分层综放开采覆岩破坏高度研究[J]. 采矿与安全工程学报, 33 (2): 226-230, 237. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201602006.htm
    胡社荣, 蔺丽娜, 黄灿, 等. 2011. 超厚煤层分布与成因模式[J]. 中国煤炭地质, 23 (1): 1-5. doi: 10.3969/j.issn.1674-1803.2011.01.01
    康天合, 柴肇云, 李义宝, 等. 2007. 底层大采高综放全厚开采20m特厚中硬煤层的物理模拟研究[J]. 岩石力学与工程学报, 26 (5): 1065-1072. doi: 10.3321/j.issn:1000-6915.2007.05.028
    李根生, 曾强, 赵龙辉, 等. 2018. 巨厚煤层开采覆岩含水层破坏模拟: 以准东大井矿区为例[J]. 中国矿业, 27 (3): 104-109. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA201803021.htm
    李水根. 2004. 分形[M]. 北京: 高等教育出版社.
    李振华, 丁鑫品, 程志恒. 2010. 薄基岩煤层覆岩裂隙演化的分形特征研究[J]. 采矿与安全工程学报, 27 (4): 576-580. doi: 10.3969/j.issn.1673-3363.2010.04.025
    刘天泉. 1995. 矿山岩体采动影响与控制工程学及其应用[J]. 煤炭学报, 20 (1): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB501.000.htm
    娄芳, 王震, 金士魁, 等. 2017. 深埋巨厚煤层分层开采覆岩破坏规律研究[J]. 煤炭技术, 36 (7): 34-37. https://www.cnki.com.cn/Article/CJFDTOTAL-MTJS201707013.htm
    彭瑞东, 谢和平, 鞠杨. 2004. 二维数字图像分形维数的计算方法[J]. 中国矿业大学学报, 33 (1): 19-24. doi: 10.3321/j.issn:1000-1964.2004.01.005
    钱鸣高, 缪协兴, 许家林. 1996. 岩层控制中的关键层理论研究[J]. 煤炭学报, 21 (3): 2-7. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB603.000.htm
    乔小龙. 2017. 大采高综放开采覆岩破坏特征和裂隙演化规律[J]. 工程地质学报, 25 (3): 858-866. doi: 10.13544/j.cnki.jeg.2017.03.034
    秦冬冬. 2020. 新疆准东矿区缓斜巨厚煤层多分层开采覆岩结构演变机理及控制[D]. 徐州: 中国矿业大学.
    任启寒, 徐遵玉, 陈成. 2021. 特厚煤层综放采场覆岩结构及矿压规律研究[J]. 煤炭工程, 53 (1): 79-83. https://www.cnki.com.cn/Article/CJFDTOTAL-MKSJ202101019.htm
    隋旺华, 刘佳维, 高炳伦, 等. 2019. 采掘诱发高势能溃砂灾变机理与防控研究与展望[J]. 煤炭学报, 44 (8): 2419-2426. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201908017.htm
    隋旺华. 1994. 开采覆岩破坏工程地质预测的理论与实践[J]. 工程地质学报, 2 (2): 29-37. http://www.gcdz.org/article/id/9910
    田成东. 2016. 巨厚煤层开采覆岩破坏规律及地表变形研究[D]. 徐州: 中国矿业大学.
    王金华. 2013. 特厚煤层大采高综放开采关键技术[J]. 煤炭学报, 38 (12): 2089-2098. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201312001.htm
    许猛堂. 2014. 新疆巨厚煤层开采覆岩活动规律及其控制研究[D]. 徐州: 中国矿业大学.
    杨起, 韩德馨. 1979. 中国煤田地质学(上册)[M]. 北京: 煤炭工业出版社.
    曾强, 李根生, 杨洁, 等. 2019. 准东大井矿区巨厚煤层开采覆岩含水层渗透特性研究[J]. 中国矿业, 28 (5): 116-124. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA201905024.htm
    张宏伟, 荣海, 韩军, 等. 2014. EH-4在复杂巨厚煤层覆岩破坏范围确定中的应用[J]. 地球物理学进展, 29 (5): 2307-2313. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201405047.htm
    朱涛. 2010. 软煤层大采高综采采场围岩控制理论及技术研究[D]. 太原: 太原理工大学.
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  147
  • HTML全文浏览量:  58
  • PDF下载量:  65
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-01
  • 修回日期:  2021-07-13
  • 网络出版日期:  2021-09-03
  • 刊出日期:  2021-09-03

目录

    /

    返回文章
    返回