淮南煤田潘集煤矿外围勘查区水压致裂地应力测量研究

吴基文 张文永 彭华 翟晓荣 沈书豪 孙贵 毕尧山

吴基文, 张文永, 彭华, 等. 2021. 淮南煤田潘集煤矿外围勘查区水压致裂地应力测量研究[J]. 工程地质学报, 29(4): 972-984. doi: 10.13544/j.cnki.jeg.2021-0302
引用本文: 吴基文, 张文永, 彭华, 等. 2021. 淮南煤田潘集煤矿外围勘查区水压致裂地应力测量研究[J]. 工程地质学报, 29(4): 972-984. doi: 10.13544/j.cnki.jeg.2021-0302
Wu Jiwen, Zhang Wenyong, Peng Hua, et al. 2021. In-situ stress measurement by hydraulic fracturing method around Panji coal mine exploration area in Huainan coalfield[J]. Journal of Engineering Geology, 29(4): 972-984. doi: 10.13544/j.cnki.jeg.2021-0302
Citation: Wu Jiwen, Zhang Wenyong, Peng Hua, et al. 2021. In-situ stress measurement by hydraulic fracturing method around Panji coal mine exploration area in Huainan coalfield[J]. Journal of Engineering Geology, 29(4): 972-984. doi: 10.13544/j.cnki.jeg.2021-0302

淮南煤田潘集煤矿外围勘查区水压致裂地应力测量研究

doi: 10.13544/j.cnki.jeg.2021-0302
基金项目: 

国家自然科学基金 41272278

详细信息
    通讯作者:

    吴基文(1961-), 男, 博士, 教授, 博士生导师, 主要从事煤矿工程地质与水害防治方面的科研与教学工作.E-mail: jwwuaust@163.com

  • 中图分类号: P642;TD12

IN-SITU STRESS MEASUREMENT BY HYDRAULIC FRACTURING METHOD AROUND PANJI COAL MINE EXPLORATION AREA IN HUAINAN COALFIELD

Funds: 

the National Natural Science Foundation of China 41272278

  • 摘要: 为分析淮南煤田潘集煤矿外围勘查区的地应力分布规律,采用水压致裂法及装置,对研究区深部勘查区域地应力进行了测试。本次研究共完成3个钻孔、28个测点的现场实测,3个钻孔深度均超过1400 m,其中最大测点深度为1460 m。通过实测和分析,获得了勘查区的地应力状态及其分布规律。研究结果表明:(1)勘查区深度466~1460 m范围内最大水平主应力为13.62~54.58 MPa,最小水平主应力为11.79~37.93 MPa,最大水平主应力方向为NEE向,实测地应力值随着深度增加成近似线性增长的关系;(2)勘查区最大水平主应力与垂直应力的比值为1.03~1.44,平均比值为1.28,表明勘查区地应力状态以水平应力为主导;(3)在埋深450 m以深地应力场类型表现为构造应力场型,且随深度增加,构造应力显现也增大。测量结果可为勘查区矿井规划与煤炭开采设计提供科学依据。
  • 图  1  SY-2010型单回路水压致裂地应力测量系统

    Figure  1.  Single-loop hydraulic fracturing in-situ stress measurement system SY-2010

    图  2  研究区测量钻孔分布位置

    Figure  2.  Location of measuring drillings of the study area

    图  3  各测量钻孔测段分布图

    a. 14-2孔;b. 6-2孔;c. 24-5孔

    Figure  3.  Distribution of measuring sections of measuring drillings

    图  4  测量钻孔各测段压裂试验记录曲线

    a. 14-2孔;b. 6-2孔;c. 24-5孔

    Figure  4.  Fracturing test record curves of each section of measuring drillings

    图  5  测量钻孔各测段印模图

    a. 14-2孔;b. 6-2孔;c. 24-5孔

    Figure  5.  Impression results of each measuring section of the measuring drillings for in-situ stress test

    图  6  14-2孔1468~1472 m深度饼状岩芯

    Figure  6.  Discal core with depth of 1468~1472 m in No. 14-2 hole

    图  7  潘集外围勘查区地应力随埋深变化

    Figure  7.  Variation of in-situ stress with burial depth in the exploration area surrounding Panji coal mine

    表  1  地应力测试钻孔基本情况表

    Table  1.   Basic information of boreholes for in-situ stress test

    钻孔编号 终孔深度/m 上覆冲积层厚度/m 测孔位置/m
    X Y Z
    14-2 1538.68 112.35 3 624 630.38 39 490 663.13 21.98
    6-2 1516.60 213.25 3 632 835.45 39 491799.60 22.00
    24-5 1456.18 239.80 3 624 346.59 39 479 780.66 21.93
    下载: 导出CSV

    表  2  地应力测试钻孔测段分布

    Table  2.   Distribution of measuring sections of drillings for in-situ stress test

    钻孔编号 终孔深度/m 测段数 测点位置/m
    测段1 测段2 测段3 测段4 测段5 测段6 测段7 测段8 测段9 测段10
    14-2 1538.68 9 466.00 577.00 613.00 797.00 999.80 1238.00 1347.00 1384.00 1424.00 /
    6-2 1516.60 9 481.00 535.00 615.00 725.00 826.00 967.00 1064.00 1264.00 1464.00 /
    24-5 1456.18 10 888.65 961.05 1015.40 1051.60 1105.90 1142.10 1258.50 1341.20 1413.60 1431.70
    下载: 导出CSV

    表  3  淮南潘集煤矿外围水压致裂地应力测量结果

    Table  3.   Results of in-situ stress measurement using hydraulic fracturing technique in Panji coal mine

    孔段编号 测段埋深/m 压裂参数/MPa 主应力值/MPa 破裂方位/(°)
    Pb Pr Ps P0 T σH σh σv
    14-2-1 466.00 16.53 16.01 11.43 4.66 0.52 13.62 11.43 11.79
    14-2-2 557.00 17.76 17.75 13.05 5.57 0.01 15.83 13.05 14.25 NE76.7
    14-2-3 613.00 23.04 22.52 16.05 6.13 0.52 19.50 16.05 15.76
    14-2-4 797.00 28.02 27.03 18.75 7.97 0.99 21.25 18.75 20.73 NE78.8
    14-2-5 999.77 34.33 34.12 24.78 10.00 0.21 30.22 24.78 26.20
    14-2-6 1238.00 31.78 31.71 26.01 12.38 0.07 33.94 26.01 32.64
    14-2-7 1347.00 39.97 38.39 30.92 13.47 1.58 40.90 30.92 35.58
    14-2-8 1384.00 49.18 46.20 34.92 13.84 2.98 44.72 34.92 36.58 NE65.5
    14-2-9 1424.00 55.28 53.26 38.92 14.24 2.02 49.26 38.92 37.66 NE72.8
    6-2-1 481.00 10.64 10.20 10.19 4.81 0.45 15.57 10.19 11.50 NE70.0
    6-2-2 535.00 13.40 12.55 12.03 5.35 0.85 18.18 12.03 12.96
    6-2-3 615.00 26.63 25.41 16.91 6.15 1.22 19.16 16.91 15.12
    6-2-4 725.00 29.18 28.95 20.08 7.25 0.23 24.05 20.08 18.09 NE69.6
    6-2-5 826.00 36.30 35.07 23.55 8.26 1.23 27.34 23.55 20.81
    6-2-6 967.00 35.76 34.72 24.61 9.67 1.04 29.44 24.61 24.62
    6-2-7 1064.00 47.14 45.30 29.70 10.64 1.84 33.16 29.70 27.24
    6-2-8 1264.00 54.79 50.52 33.65 12.64 4.27 37.80 33.65 32.64 NE68.2
    6-2-9 1460.00 60.87 55.44 41.54 14.60 5.43 54.58 41.54 37.93 NE60.1
    24-5-1 888.65 39.64 35.73 24.64 8.89 3.91 29.29 24.64 22.31 NE43.0
    24-5-2 961.05 43.40 38.89 27.85 9.61 4.50 35.04 27.85 24.27
    24-5-3 1015.40 41.63 36.76 28.01 10.15 4.87 37.11 28.01 25.73
    24-5-4 1051.60 44.18 39.41 29.39 10.52 4.77 38.23 29.39 26.71 NE51.6
    24-5-5 1105.90 46.30 42.96 31.35 11.06 3.34 40.04 31.35 28.18
    24-5-6 1142.10 49.76 48.34 33.19 11.42 1.43 39.80 33.19 29.16
    24-5-7 1258.50 56.14 53.44 36.47 12.58 2.70 43.39 36.47 32.30
    24-5-8 1341.20 64.79 58.93 39.56 13.41 5.86 46.35 39.56 34.53
    24-5-8 1413.60 64.79 59.43 41.48 14.14 5.36 50.88 41.48 36.49
    24-5-10 1431.70 64.87 63.02 42.77 14.32 1.84 50.98 42.77 36.97 NE62.1
    下载: 导出CSV

    表  4  地应力比值计算结果

    Table  4.   Calculation results of in-situ stress ratio

    孔段编号 测段埋深/m σH/σv σh/σv σH/σh 孔段编号 测段埋深/m σH/σv σh/σv σH/σh 孔段编号 测段埋深/m σH/σv σh/σv σH/σh
    14-2-1 466.00 1.16 0.97 1.19 6-2-1 481 1.35 0.89 1.53 24-5-1 888.65 1.31 1.10 1.19
    14-2-2 557.00 1.11 0.92 1.21 6-2-2 535 1.40 0.93 1.51 24-5-2 961.05 1.44 1.15 1.26
    14-2-3 613.00 1.24 1.02 1.21 6-2-3 615 1.27 1.12 1.13 24-5-3 1015.40 1.44 1.09 1.32
    14-2-4 797.00 1.03 0.90 1.13 6-2-4 725 1.33 1.11 1.20 24-5-4 1051.60 1.43 1.10 1.30
    14-2-5 999.77 1.15 0.95 1.22 6-2-5 826 1.31 1.13 1.16 24-5-5 1105.90 1.42 1.11 1.28
    14-2-6 1238.00 1.04 0.80 1.30 6-2-6 967 1.20 1.00 1.20 24-5-6 1142.10 1.36 1.14 1.20
    14-2-7 1347.00 1.15 0.87 1.32 6-2-7 1064 1.22 1.09 1.12 24-5-7 1258.50 1.34 1.13 1.19
    14-2-8 1384.00 1.22 0.95 1.28 6-2-8 1264 1.16 1.03 1.12 24-5-8 1341.20 1.34 1.15 1.17
    14-2-9 1424.00 1.31 1.03 1.27 6-2-9 1460 1.44 1.10 1.31 24-5-8 1413.60 1.39 1.14 1.23
    24-5-10 1431.70 1.38 1.16 1.19
    下载: 导出CSV
  • Bohloli B, Pater C J. 2006. Experimental study of hydraulic fracturing of soft rocks: influence of fluid rheology and confining stress[J]. Journal of Petroleum Science and Engineering, 53(1): 1-12.
    Cai M F, Chen C Z, Peng H, et al. 2006. In-situ stress measurement by hydraulic fracturing technique in deep position of Wanfu coal mine[J]. Chinese Journal of Rock Mechanics and Engineering, 25(5): 1069-1074. http://www.researchgate.net/publication/288417874_In-situ_stress_measurement_by_hydraulic_fracturing_technique_in_deep_position_of_Wanfu_coal_mine
    Cai M F. 2000. Principle and techniques of in-situ stress measurement[M]. Beijing: Science Press.
    Cai M F. 2001. Optimization of mining design and control of ground pressure in metal mines-theory and practice[M]. Beijing: Science Press.
    Chatterjee R, Pal P K. 2010. Estimation of stress magnitude and physical properties for coal seam of Rangamati area, Raniganj coal field, India[J]. International Journal of Coal Geology, 81(1): 25-36. doi: 10.1016/j.coal.2009.10.006
    Chen J G, Gao L S. 1989. In-suit stress, in-suit strength of rocks and the China mainland stress field[J]. Acta Seismologica Sinica, 11(2): 142-152. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXB198902003.htm
    Chen Q C, Sun D S, Cui J J, et al. 2019. Hydraulic fracturing stress measurements in Xuefengshan deep borehole and its significance[J]. Journal of Geomechanics, 25(5): 853-865. http://en.cnki.com.cn/Article_en/CJFDTotal-DZLX201905015.htm
    Han Z H, Zhang L Q, Yuan G X. 2019. Rock mass quality assessment of borehole NRG01 in Bayannuorigong Alxa based on BQ-system[J]. Journal of Engineering Geology, 27(6): 1208-1215. http://en.cnki.com.cn/Article_en/CJFDTotal-GCDZ201906002.htm
    Hayashi K, Sato A, Ito T. 1997. In-situ stress measurements by hydraulic fracturing for a rock mass with many planes of weakness[J]. International Journal of Rock Mechanics and Mining Sciences, 34(1): 45-48. doi: 10.1016/S1365-1609(97)80032-9
    Huang Y D, Pan Q, Yao L K, et al. 2021. Characteristics of measured stress and route selection strategy under high in-situ stress risk control along Lalin section of Sichuan-Tibet railway[J]. Journal of Engineering Geology, 29(2): 375-382.
    Hudson J A, Cornet F H, Christiansson R. 2003. ISRM suggested methods for rock stress estimation[J]. International Journal of Rock Mechanics and Mining Sciences, 40(7): 991-998. http://www.sciencedirect.com/science/article/pii/S1365160903001321
    Jin T. 2018. Experimental study on petrophysical and mechanical properties of Shanxi formation in theperiphery of Panji coal Mine, Huainan coalfield[D]. Huainan: Anhui University of Science and Technology.
    Kang H P, Lin J, Zhang X. 2007. Research and application of in-situ stress measurement in deep mines[J]. Chinese Journal of Rock Mechanics and Engineering, 26(5): 929-933. http://qikan.cqvip.com/Qikan/Article/Detail?id=25633818
    Klee G, Rummel F, Williams A. 1999. Hydraulic fracturing stress measurements in Hong Kong[J]. International Journal of Rock Mechanics and Mining Sciences, 36(6): 731-741. doi: 10.1016/S0148-9062(99)00036-4
    Li Y, Tang D Z, Xu H, et al. 2014. Characteristic of in-situ stress field in Liulin area, Ordos Basin and its control on coal fractures[J]. Journal of China Coal Society, 39(S1): 164-168. http://qikan.cqvip.com/Qikan/Article/Detail?id=661725931
    Lin Y B, Shen X L, Liu J, et al. 2020. Characteristics of in-situ stress and its geological significance in Huanglong Jurassic coalfield[J]. Journal of Mining and Safety Engineering, 37(4): 819-827.
    Liu C X. 2011. Development and exploration of Fuxin's coal-bed gas[J]. Journal of Liaoning Technical University(Natural Science), 30(S): 78-80. http://en.cnki.com.cn/Article_en/CJFDTOTAL-FXKY2011S1024.htm
    Liu D W, Liu Z M, Shen X Q, et al. 2004. The characteristics of modern structure stress field in the Huaihe structure deformation belt, Anhui and its neighborhood block[J]. Earthquake Research in China, 20(4): 364-371. http://epub.cnki.net/grid2008/docdown/docdownload.aspx?filename=ZGZD200404005&dbcode=CJFD&year=2004&dflag=pdfdown
    Liu Q S, Gao W, Yuan L. 2010. Stability control theory and the supporting technology in deep rock roadway[M]. Beijing: Science Press.
    Liu Y F, Han X Y, Liu Y K. 2006. Measurement and analysis of three-dimensional geostress by hydraulic fracturing technique in Shenzhen pumped storage power station[J]. Rock and Soil Mechanics, 7(S): 1205-1210. http://www.cnki.com.cn/Article/CJFDTotal-YTLX2006S2097.htm
    Liu Y F. 1991. In-situ 3-dimensional stress measurements b hydraulic fracturing technique[J]. Chinese Journal of Rock Mechanics and Engineering, 10(3): 246-256. http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSLX199103004.htm
    Ma X M. 2006. Study on in-situ stresses measurement with hydro-Fracturing method & stability of tunnel project in the site of deep-buried and the longer tunnel in the northern of Tanshan on Jiyihuo railways, Sinkiang[D]. Beijing: Chinese Academy of Geological Sciences.
    Ni H Y, Liu Z M, He K. 2013. Study on focal mechanisms of moderate-small earthquakes and characteristics of recent tectonic stress field in the Anhui Sector of Tanlu Fault Zone[J]. China Earthquake Engineering Journal, 35(3): 677-683. http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZBDZ201303044.htm
    Niu L L, Du J J, Feng C J, et al. 2015. In-situ stress measurement of deep borehole in east of Hebei and its significance[J]. Acta Seismologica Sinica, 37(1): 89-102. http://www.researchgate.net/publication/281769997_In-situ_stress_measurement_of_deep_borehole_in_east_of_Hebei_and_its_significance
    Peng H, Ma X M, Jiang J J, et al. 2011. Research on stress field and hydraulic fracturing in-situ stress measurement of 1000 m deep hole in Zhaolou coal mine[J]. Chinese Journal of Rock Mechanics and Engineering, 30(8): 1638-1645. http://d.wanfangdata.com.cn/Periodical/yslxygcxb201108016
    Peng H, Ma X M. 2007. Risk analysis and prediction of earthquakes in the construction area of the west line of the South-to-North Water Diversion Project[J]. Journal of Geomechanics, 13(1): 15-24. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLX200701002.htm
    Peng X F, Yu S Z. 1998. General type of in-situ stress field in Huainan mine area[J]. Journal of China University of Mining & Technology, 27(1): 60-63. http://www.cnki.com.cn/Article/CJFDTotal-ZGKD801.014.htm
    Shen S H, Wu J W, Zhai X R, et al. 2017. Variation of mechanical properties of coal and rocks in the deep mine in-situ stress field[J]. Journal of Mining & Safety Engineering, 34(6): 1200-1206. http://www.researchgate.net/publication/321888468_Variation_of_mechanical_properties_of_coal_and_rocks_in_the_deep_mine_in-situ_stress_field
    Sun D S, Feng C J, Xu H B, et al. 2015. In-situ stress measurement at deep borehole of Dataigou Iron Mine area and its application[J]. Journal of Central South University(Science and Technology), 46(4): 1384-1392. http://www.researchgate.net/publication/282285221_In-situ_stress_measurement_at_deep_borehole_of_Dataigou_Iron_Mine_area_and_its_application
    Tang S H, Zhu B C, Yan Z F. 2011. Effect of crustal stress on hydraulic fracturing in coalbed methane wells[J]. Journal of China Coal Society, 36(1): 65-69. http://www.ingentaconnect.com/content/jccs/jccs/2011/00000036/00000001/art00013
    The National Standards Compilation Group of People's Republic of China. 2015. Standard for engineering classification of rock masses(GB/T 50218-2014)[S]. Beijing: China Planning Press.
    Tian M Q, Huang X. 2012. Research on mechanical characteristics and control of squeeze deformation of soft rock roadway in deep mine with depth over 1000 m[J]. Coal Engineering, (11): 72-74.
    Wang Z Q, Yan E C, Ji H B. 2016. In-situ stress field and geological tectonic analysis at Huangdao water-sealed underground oil carven site[J]. Journal of Engineering Geology, 24(1): 136-141. http://en.cnki.com.cn/Article_en/CJFDTOTAL-GCDZ201601022.htm
    Wu H. 2017. Analysis on geological factors affecting gas occurrence in periphery(depth)of Panji coal minemine in Huainan[J]. Journal of Anhui University of Science and Technology(Natural Science), 37(3): 60-65. http://www.en.cnki.com.cn/Article_en/CJFDTotal-HLGB201703011.htm
    Xu Z X, Meng W, Guo C B, et al. 2021. In-situ stress measurement and its application of a deep-buried tunnel in Zheduo Mountain, West Sichuan[J]. Geoscience, 35(1): 114-125.
    Xue L, Yao D X, Lu H F, et al. 2018. Focal mechanism solution inversion regional tectonic stress field features in Huainan and Huaibei mining areas[J]. Coal Geology of China, 30(2): 14-17, 79. http://en.cnki.com.cn/Article_en/CJFDTotal-ZGMT201802003.htm
    Yang S X. 2008. Results of rock stress measurements and engineering significance of Song-shu-yuan tunnel in new railway from Dali to Li-jiang in Yunnan Province[D]. Chengdu: Southwest Jiaotong University.
    You M Q. 2005. Study of the geo-stresses measurement with hydro-fracture of borehole[J]. Chinese Journal of Geotechnical Engineering, 27(3): 350-353. http://www.cnki.com.cn/Article/CJFDTotal-YTGC20050300M.htm
    Yuan L. 2006. Control of surrounding strata in deep mine roadway and practice in Huainan areas[M]. Beijing: China Coal Industry Publishing House.
    Yuan W F, Liu S G, Zhang X L, et al. 2012. Productivity and dynamic recovery rate in coalbed methane horizontal well[J]. Journal of Liaoning Technical University(Natural Science), 31(4): 441-444. http://www.cqvip.com/QK/94702A/201204/1001842597.html
    Zhang G H. 2019. Research and application of geostress in the shale-gas-bearing area in Yichang[D]. Beijing: China University of Petroleum.
    Zhang R, Ju Y J, Peng H, et al. 2010. Analysis on ground stress measurement and application in Xinji No. 1 Mine[J]. Coal Science and Technology, 38(8): 15-17, 21. http://en.cnki.com.cn/Article_en/CJFDTOTAL-MTKJ201008005.htm
    Zhang Y X, Song C S, Cai M F, et al. 2010. Geostress measurements by hydraulic fracturing method at great depth of boreholes and numerical modelling predictions of stress field[J]. Chinese Journal of Rock Mechanics and Engineering, 29(4): 778-786. http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSLX201004017.htm
    Zhang Y X. 2021. Characteristics of current in-situ stress field about Sejila Mountain traffic corridor[J]. Journal of Engineering Geology, 29(2): 394-403.
    Zhao G P, Chen W H, Ma P, et al. 2013. Brief discussion on the application of geostress measurement by hydrofracturing technique in hydropower engineering[J]. Journal of Yangtze River Scientific Research Institute, 30(11): 77-82. http://qikan.cqvip.com/Qikan/Article/Detail?id=47807675
    蔡美峰, 陈长臻, 彭华, 等. 2006. 万福煤矿深部水压致裂地应力测量[J]. 岩石力学与工程学报, 25(5): 1069-1074. doi: 10.3321/j.issn:1000-6915.2006.05.033
    蔡美峰. 2000. 地应力测量原理和技术[M]. 北京: 科学出版社.
    蔡美峰. 2001. 金属矿山采矿设计优化与地压控制-理论与实践[M]. 北京: 科学出版社.
    陈家庚, 高龙生. 1989. 原地应力、岩层原地强度及中国大陆之应力场[J]. 地震学报, 11(2): 142-152. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB198902003.htm
    陈群策, 孙东生, 崔建军, 等. 2019. 雪峰山深孔水压致裂地应力测量及其意义[J]. 地质力学学报, 25(5): 853-865. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201905015.htm
    韩振华, 张路青, 袁广祥. 2019. 基于BQ系统的阿拉善巴彦诺日公NRG01号钻孔岩体质量评价[J]. 工程地质学报, 27(6): 1208-1215. doi: 10.13544/j.cnki.jeg.2017-183
    黄艺丹, 潘前, 姚令侃, 等. 2021. 川藏铁路拉林段地应力特征及高地应力风险调控选线策略[J]. 工程地质学报, 29(2): 375-382. doi: 10.13544/j.cnki.jeg.2021-0105
    靳拓. 2018. 淮南煤田潘集煤矿外围山西组岩石物理力学性质试验研究[D]. 淮南: 安徽理工大学.
    康红普, 林健, 张晓. 2007. 深部矿井地应力测量方法研究与应用[J]. 岩石力学与工程学报, 26(5): 929-933. doi: 10.3321/j.issn:1000-6915.2007.05.009
    李勇, 汤达祯, 许浩, 等. 2014. 鄂尔多斯盆地柳林地区煤储层地应力场特征及其对裂隙的控制作用[J]. 煤炭学报, 39(S1): 164-168. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2014S1028.htm
    蔺亚兵, 申小龙, 刘军, 等. 2020. 黄陇侏罗纪煤田地应力特征及其地质意义[J]. 采矿与安全工程学报, 37(4): 819-827. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL202004021.htm
    刘春香. 2011. 浅谈阜新煤层气开发与利用[J]. 辽宁工程技术大学学报(自然科学版), 30(增刊): 78-80. https://www.cnki.com.cn/Article/CJFDTOTAL-FXKY2011S1024.htm
    刘东旺, 刘泽民, 沈小七, 等. 2004. 安徽淮河构造变形带及邻近块体现代构造应力场特征[J]. 中国地震, 20(4): 364-371. doi: 10.3969/j.issn.1001-4683.2004.04.006
    刘泉声, 高玮, 袁亮. 2010. 煤矿深部岩巷稳定控制理论与支护技术及应用[M]. 北京: 科学出版社.
    刘允芳, 韩晓玉, 刘元坤. 2006. 深圳抽水蓄能电站水压致裂法三维地应力测量和分析[J]. 岩土力学, 27(S): 1205-1210. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2006S2097.htm
    刘允芳. 1991. 水压致裂法三维应力测量[J]. 岩石力学与工程学报, 10(3): 246-256. https://www.cnki.com.cn/Article/CJFDTOTAL-SFXB200405009.htm
    马秀敏. 2006. 新疆精伊霍铁路北天山越岭深埋特长隧道区水压致裂地应力测量与隧道工程稳定性研究[D]. 北京: 中国地质科学院.
    倪红玉, 刘泽民, 何康. 2013. 郯庐断裂带安徽段中小地震震源机制及现代应力场特征[J]. 地震工程学报, 35(3): 677-683. doi: 10.3969/j.issn.1000-0844.2013.03.0677
    牛琳琳, 杜建军, 丰成君, 等. 2015. 冀东地区深孔地应力测量及其意义[J]. 地震学报, 37(1): 89-102. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB201501008.htm
    彭华, 马秀敏, 姜景捷, 等. 2011. 赵楼煤矿1000 m深孔水压致裂地应力测量及其应力场研究[J]. 岩石力学与工程学报, 30(8): 1638-1645. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201108017.htm
    彭华, 马秀敏. 2007. 南水北调西线工程区地震危险性分析及预测[J]. 地质力学学报, 13(1): 15-24. doi: 10.3969/j.issn.1006-6616.2007.01.003
    彭向锋, 于双忠. 1998. 淮南矿区原岩应力场宏观类型工程地质研究[J]. 中国矿业大学学报, 27(1): 60-63. doi: 10.3321/j.issn:1000-1964.1998.01.015
    沈书豪, 吴基文, 翟晓荣, 等. 2017. 深部地应力场下煤系岩石力学性质变化规律[J]. 采矿与安全工程学报, 34(6): 1200-1206. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201706026.htm
    孙东生, 丰成君, 许洪斌, 等. 2015. 大台沟矿区深孔水压致裂原地应力测量及应用[J]. 中南大学学报(自然科学版), 46(4): 1384-1392. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201504028.htm
    唐书恒, 朱宝存, 颜志丰. 2011. 地应力对煤层气井水力压裂裂缝发育的影响[J]. 煤炭学报, 36(1): 65-69. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201101015.htm
    田梅青, 黄兴. 2012. 千米深井软岩巷道挤压变形力学特性及控制研究[J]. 煤炭工程, (11): 72-74. https://www.cnki.com.cn/Article/CJFDTOTAL-MKSJ201211027.htm
    王章琼, 晏鄂川, 季惠斌. 2016. 黄岛地下水封油库地应力场及地质构造作用分析[J]. 工程地质学报, 24(1): 136-141. doi: 10.13544/j.cnki.jeg.2016.01.017
    吴桁. 2017. 煤矿外围(深部)影响瓦斯赋存的地质因素[J]. 安徽理工大学学报(自然科学版), 37(3): 60-65. doi: 10.3969/j.issn.1672-1098.2017.03.010
    徐正宣, 孟文, 郭长宝, 等. 2021. 川西折多山某深埋隧道地应力测量及其应用研究[J]. 现代地质, 35(1): 114-125. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ202101013.htm
    薛凉, 姚多喜, 鲁海峰, 等. 2018. 两淮矿区震源机制解反演区域构造应力场特征[J]. 中国煤炭地质, 30(2): 14-17, 79. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMT201802003.htm
    杨绍喜. 2008. 云南大理-丽江新建铁路线松树圆隧道地应力测试及其工程意义[D]. 成都: 西南交通大学.
    尤明庆. 2005. 水压致裂法测量地应力方法的研究[J]. 岩土工程学报, 27(3): 350-353. doi: 10.3321/j.issn:1000-4548.2005.03.022
    袁亮. 2006. 深井巷道围岩控制理论及淮南矿区工程实践[M]. 北京: 煤炭工业出版社.
    袁文峰, 刘升贵, 张新亮, 等. 2012. 煤层气水平井产气特征及动态采收率[J]. 辽宁工程技术大学学报(自然科学版), 31(4): 441-444. doi: 10.3969/j.issn.1008-0562.2012.04.003
    张光晗. 2019. 宜昌页岩气资源分布区地应力研究及应用[D]. 北京: 中国石油大学.
    张蕊, 鞠远江, 彭华, 等. 2010. 新集一矿地应力测试及应用分析[J]. 煤炭科学技术, 38(8): 15-17, 21. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201008005.htm
    张延新, 宋常胜, 蔡美峰, 等. 2010. 深孔水压致裂地应力测量及应力场反演分析[J]. 岩石力学与工程学报, 29(4): 778-786. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201004017.htm
    张玉玺. 2021. 色季拉山交通廊道现今地应力场特征研究[J]. 工程地质学报, 29(2): 394-403. doi: 10.13544/j.cnki.jeg.2021-0126
    赵国平, 陈文华, 马鹏, 等. 2013. 水压致裂法地应力测试在水电工程中的应用[J]. 长江科学院院报, 30(11): 77-82. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201311016.htm
    中华人民共和国行业标准编写组. 2015. 工程岩体分级标准(GB/T 50218-2014)[S]. 北京: 中国计划出版社.
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  75
  • HTML全文浏览量:  53
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-02
  • 修回日期:  2021-07-25
  • 网络出版日期:  2021-09-03
  • 刊出日期:  2021-09-03

目录

    /

    返回文章
    返回