金川矿区深部巷道开挖损伤数值模拟研究

孙琪皓 马凤山 万洋 郭捷 李光

孙琪皓, 马凤山, 万洋, 等. 2021. 金川矿区深部巷道开挖损伤数值模拟研究[J]. 工程地质学报, 29(4): 1017-1027. doi: 10.13544/j.cnki.jeg.2021-0316
引用本文: 孙琪皓, 马凤山, 万洋, 等. 2021. 金川矿区深部巷道开挖损伤数值模拟研究[J]. 工程地质学报, 29(4): 1017-1027. doi: 10.13544/j.cnki.jeg.2021-0316
Sun Qihao, Ma Fengshan, Wan Yang, et al. 2021. Numerical simulations of excavation damage in deep roadways of Jinchuan mining area[J]. Journal of Engineering Geology, 29(4): 1017-1027. doi: 10.13544/j.cnki.jeg.2021-0316
Citation: Sun Qihao, Ma Fengshan, Wan Yang, et al. 2021. Numerical simulations of excavation damage in deep roadways of Jinchuan mining area[J]. Journal of Engineering Geology, 29(4): 1017-1027. doi: 10.13544/j.cnki.jeg.2021-0316

金川矿区深部巷道开挖损伤数值模拟研究

doi: 10.13544/j.cnki.jeg.2021-0316
基金项目: 

国家自然科学基金项目 41772341

国家自然科学基金项目 42072305

国家自然科学基金项目 41877274

国家自然科学基金项目 41831293

详细信息
    作者简介:

    孙琪皓(1993-),男,博士生,主要从事工程地质与岩石力学研究工作. E-mail: sqhqqyx@163.com

    通讯作者:

    马凤山(1964-),男,研究员,博士生导师,主要从事地质工程与地质灾害研究工作. E-mail: fsma@mail.iggcas.ac.cn

  • 中图分类号: TD853

NUMERICAL SIMULATIONS OF EXCAVATION DAMAGE IN DEEP ROADWAYS OF JINCHUAN MINING AREA

Funds: 

the National Natural Science Foundation of China 41772341

the National Natural Science Foundation of China 42072305

the National Natural Science Foundation of China 41877274

the National Natural Science Foundation of China 41831293

  • 摘要: 在地下深处开挖巷道会诱发应力的急剧调整,无疑会使围岩产生不同程度的损伤。开挖的动态作用虽然持续时间较短,但造成的损伤为后续时效变形和工程扰动影响下的失稳破坏提供了基础条件。为了能够得到开挖作用引起的金川矿区深部巷道损伤区演化规律,从而对巷道损伤破坏进行针对性的防治,本文基于矿区的实际巷道埋深和岩体结构种类,采用等效开挖模拟方法和非均质模型进行了巷道开挖损伤问题的数值模拟研究。模拟结果揭示了在不同水平和岩体结构条件组合情况下开挖损伤区的演化过程和规律。根据研究区巷道的损伤破坏规律,本文提出了深部巷道开挖损伤演化的5种模式,并揭示了各种模式的诱发条件、表现特征、力学机制及发展趋势。相关认识和结论期望为理论和工程实践提供一定的借鉴和参考。
  • 图  1  金川矿体开采纵剖面图

    Figure  1.  Longitudinal profile of orebody in Jinchuan mining area

    图  2  金川二矿区深部巷道岩体结构

    a. 整体块状结构;b. 层状结构;c. 菱块状结构

    Figure  2.  Rock mass structure of deep roadways in Jinchuan No.2 mining area

    图  3  金川二矿区深部典型损伤破坏现象

    a. 巷道开挖损伤现象;b. 支护损伤破坏现象

    Figure  3.  Typical damage and failure phenomena in deep roadways of Jinchuan No.2 mining area

    图  4  金川二矿区巷道返修费用年表(至2018年)

    Figure  4.  Schedule of roadway repair costs in Jinchuan No.2 mining area(till 2018)

    图  5  等效开挖应力路径示意图

    Figure  5.  Diagram of equivalent excavation stress path

    图  6  弹性模量的Weibull分布

    Figure  6.  Weibull distribution of the elastic modulus

    图  7  不同岩体结构模型

    a. 完整状围岩模型;b. 层状围岩模型;c. 菱块状围岩模型

    Figure  7.  Models of different rock mass structures

    图  8  完整块状围岩的开挖损伤结果

    a. 埋深550 m;b. 埋深750 m;c. 埋深1000 m

    Figure  8.  Excavation-induced damage of intact massive rock mass

    图  9  层状围岩的开挖损伤结果

    a. 埋深550 m;b. 埋深750 m;c. 埋深1000 m

    Figure  9.  Excavation-induced damage of layered rock mass

    图  10  菱块状围岩的开挖损伤结果

    a. 埋深550 m;b. 埋深750 m;c. 埋深1000 m

    Figure  10.  Excavation-induced damage of rhomboid rock mass

    图  11  底板-顶板扩展型EDZ演化模式示意图

    Figure  11.  Schematic diagram of floor-roof EDZ evolution mode

    图  12  模式1条件下的现场破坏图

    Figure  12.  Roadway failure diagram under mode 1

    图  13  底板-顶板-两帮扩展型EDZ演化模式示意图

    Figure  13.  Schematic diagram of floor-roof-sides EDZ evolution mode

    图  14  模式2条件下的现场破坏图

    Figure  14.  Roadway failure diagram under mode 2

    图  15  平行层面扩展型EDZ演化模式示意图

    Figure  15.  Schematic diagram of parallel layer extended EDZ evolution mode

    图  16  模式3条件下的现场破坏图

    Figure  16.  Roadway failure diagram under mode 3

    图  17  楔形扩展型EDZ演化模式示意图

    Figure  17.  Schematic diagram of wedge extension EDZ evolution mode

    图  18  模式4条件下的现场破坏图

    Figure  18.  Roadway failure diagram under mode 4

    图  19  菱形扩展型EDZ演化模式示意图

    Figure  19.  Schematic diagram of Rhomboid expansion EDZ evolution mode

    图  20  模式5条件下的现场破坏图

    Figure  20.  Roadway failure diagram under mode 5

    表  1  数值试验方案

    Table  1.   Numerical test scheme

    模型编号 岩体结构 地应力环境
    1 完整块状岩体 550 m
    2 完整块状岩体 750 m
    3 完整块状岩体 1000 m
    4 层状岩体 550 m
    5 层状岩体 750 m
    6 层状岩体 1000 m
    7 菱块状岩体 550 m
    8 菱块状岩体 750 m
    9 菱块状岩体 1000m
    下载: 导出CSV

    表  2  岩块和岩体的力学参数

    Table  2.   Mechanical parameters of the intact rock properties and rock mass properties

    岩性 岩块 岩体
    σc/MPa Er/GPa RQD σm/MPa Em/GPa σtm/MPa
    大理岩 79.30 75.10 50.60 19.67 8.07 1.97
    下载: 导出CSV

    表  3  UDEC Trigon模型中标定的力学参数

    Table  3.   Calibrated mechanical parameters in the UDEC Trigon model

    力学参数 块体密度/kg·m-3 泊松比 接触法向刚度/GPa·m-1 接触切向刚度/GPa·m-1 接触黏聚力/MPa 接触内摩擦角/(°) 接触抗拉强度/MPa
    数值 2800 0.30 6562 2625 2.8 34 0.6
    下载: 导出CSV

    表  4  标定物理参数的拟合度结果

    Table  4.   Physical mechanical parameters obtained by fitting

    岩性 弹性模量/GPa 抗压强度/MPa
    目标值 校准值 误差率/% 目标值 校准值 误差率/%
    大理岩 8.07 7.75 3.9 19.67 19.46 1.1
    下载: 导出CSV

    表  5  模型中施加的边界应力值

    Table  5.   Boundary stress values applied in the models

    深度/m 水平构造应力/MPa 竖直地应力/MPa k
    550 19.80 10.13 1.890 432
    750 25.90 17.60 1.591 195
    1000 39.30 28.90 1.359 862
    下载: 导出CSV
  • Bo J B, Hou C J. 2006. Control principle of surrounding rocks in deep roadway and its application[J]. Journal of China University of Mining & Technology, 35 (2): 145-148. http://www.cnki.com.cn/Article/CJFDTotal-ZGKD200602000.htm
    Carranza-Torres C, Fairhurst C. 2000. Application of the convergence-confinement method of tunnel design to rock masses that satisfy the hoek-brown failure criterion[J]. Tunnelling and Underground Space Technology, 15 (2): 187-213. doi: 10.1016/S0886-7798(00)00046-8
    Chen Z Q, He C, Xu G W, et al. 2019. A case study on the asymmetric deformation characteristics and mechanical behavior of deep-buried tunnel in phyllite[J]. Rock Mechanics and Rock Engineering, 52 (11): 4527-4545. doi: 10.1007/s00603-019-01836-2
    Coggan J, Gao F Q, Stead D, et al. 2012. Numerical modelling of the effects of weak immediate roof lithology on coal mine roadway stability[J]. International Journal of Coal Geology, 90-91 : 100-109. doi: 10.1016/j.coal.2011.11.003
    Coulthard M A. 1999. Applications of numerical modelling in underground mining and construction[J]. Geotechnical and Geological Engineering, 17(3-4): 373-385. doi: 10.1023/A%3A1008951216602
    Dai F, Lie B, Xu N W, et al. 2015. Characteristics of damaged zones due to excavation in deep underground powerhouse at Houziyan hydropower station[J]. Chinese Journal of Rock Mechanics and Engineering, 34 (4): 735-746. http://search.cnki.net/down/default.aspx?filename=YSLX201504010&dbcode=CJFD&year=2015&dflag=pdfdown
    Gao F Q. 2019. Use of numerical modeling for analyzing rock mechanic problems in underground coal mine practices[J]. Journal of Mining and Strata Control Engineering, 1(1): 013004.
    Golshani A, Oda M, Okui Y, et al. 2007. Numerical simulation of the excavation damaged zone around an opening in brittle rock[J]. International Journal of Rock Mechanics and Mining Sciences, 44 (6): 835-845. doi: 10.1016/j.ijrmms.2006.12.005
    Jiang Q, Shi Y E, Cai M F, et al. 2019. In-situ observation on large deformation and failure of deep tunnel: Case study for the Jinchuan No. 2 Mine[J]. Journal of China Coal Society, 44 (5): 1337-1348. http://www.zhangqiaokeyan.com/academic-journal-cn_journal-china-coal-society_thesis/0201270785457.html
    Kang H P, Fan M J, Gao F Q, et al. 2015. Deformation and support of rock roadway at depth more than 1000 meters[J]. Chinese Journal of Rock Mechanics and Engineering, 34 (11): 2227-2241. http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSLX201511006.htm
    Khademian Z, Ozbay U. 2019. Modeling violent rock failures in tunneling and shaft boring based on energy balance calculations[J]. Tunnelling and Underground Space Technology, 90 : 62-75. doi: 10.1016/j.tust.2019.04.018
    Li G, Ma F S, Liu G, et al. 2018. Study on supporting parametric optimizing design and evaluate supporting effect of deep roadway in Jinchuan mine[J]. Gold Science and Technology, 26 (5): 605-614. http://en.cnki.com.cn/Article_en/CJFDTotal-HJKJ201805010.htm
    Li X B, Yao J R, Gong F Q. 2011. Dynamic problems in deep exploitation of hard rock metal mines[J]. The Chinese Journal of Nonferrous Metals, 21 (10): 2551-2563. http://www.researchgate.net/publication/279937575_Dynamic_problems_in_deep_exploitation_of_hard_rock_metal_mines_J
    Liu G, Ma F S, Zhao H J, et al. 2018. Failure mechanisms study of heterogeneous jointed rock mass considering statistical damage model in tensile-shear test[J]. Rock and Soil Mechanics, 39 (S1): 9-20. http://en.cnki.com.cn/Article_en/CJFDTotal-YTLX2018S1003.htm
    Liu H, Wang P, Liu Y T, et al. 2020. A new theoretical method for calculating front abutment stress during coal mining[J]. Energy Science and Engineering, 8 (3): 836-848. doi: 10.1002/ese3.554
    Ma F S, Lu R, Guo J, et al. 2019. Deformation analysis of large backfill by three-dimensional numerical simulation in No. 2 zone of Jinchuan Mine[J]. Journal of Engineering Geology, 27 (1): 14-20. http://en.cnki.com.cn/Article_en/CJFDTotal-GCDZ201901002.htm
    Müller C, Frühwirt T, Haase D, et al. 2018. Modeling deformation and damage of rock salt using the discrete element method[J]. International Journal of Rock Mechanics and Mining Sciences, 103 : 230-241. doi: 10.1016/j.ijrmms.2018.01.022
    Popp T, Salzer K, Minkley W. 2008. Influence of bedding planes to EDZ-evolution and the coupled HM properties of Opalinus Clay[J]. Physics and Chemistry of the Earth, 33(SUPPL. 1): 5374-5387. http://www.sciencedirect.com/science/article/pii/S1474706508002878
    Siren T, Kantia P, Rinne M. 2015. Considerations and observations of stress-induced and construction-induced excavation damage zone in crystalline rock[J]. International Journal of Rock Mechanics and Mining Sciences, Elsevier, 73 : 165-174. doi: 10.1016/j.ijrmms.2014.11.001
    Sun Q H, Ma F S, Zhao H J, et al. 2018. Present situation of rock excavation damaged zone in underground engineering[J]. Journal of Engineering Geology, 26 (S1): 349-361. http://www.researchgate.net/publication/339843771_Present_situation_of_rock_excavation_damaged_zone_in_underground_engineering/download
    Sun Q H, Ma F S, Zhao H J, et al. 2019. Deformation and failure of surrounding rock considering weakening of mechanical parameters under seepage-damage-stress coupling[J]. Journal of Engineering Geology, 27 (5): 955-965. http://en.cnki.com.cn/Article_en/CJFDTOTAL-GCDZ201905003.htm
    Sun Q H, Ma F S, Guo J, et al. 2020. Deformation failure mechanism of deep vertical shaft in Jinchuan mining area[J]. Sustainability(Switzerland), 12(6): 2226. http://www.researchgate.net/publication/339843843_Deformation_Failure_Mechanism_of_Deep_Vertical_Shaft_in_Jinchuan_Mining_Area
    Sun Q H, Ma F S, Guo J, et al. 2021. Excavation-induced deformation and damage evolution of deep tunnels based on a realistic stress path[J]. Computers and Geotechnics, 129: 103843. doi: 10.1016/j.compgeo.2020.103843
    Vazaios I, Vlachopoulos N. 2017. The Evolution of the Excavation Damage Zone of Tunnels in Brittle Rockmasses using a FEM/DEM Approach[C]//Proceedings of the 70th Annual Conference of the Canadian Getechnical Society.
    Wang Z W, Zhao H J, Ma F S, et al. 2019. Numerical study on tension-shear failure mechanism of heterogeneous coplanar intermittent jointed rock mass[J]. Journal of Engineering Geology, 27 (5): 989-999. http://en.cnki.com.cn/Article_en/CJFDTotal-GCDZ201905007.htm
    Wu F, Liu J, Liu T, et al. 2020. A method for assessment of excavation damaged zone(EDZ) of a rock mass and its application to a dam foundation case[J]. Engineering Geology, 104(3-4): 254-262. http://www.sciencedirect.com/science/article/pii/S0013795208002974
    Wu Z, Jiang Y, Liu Q, et al. 2018. Investigation of the excavation damaged zone around deep TBM tunnel using a Voronoi-element based explicit numerical manifold method[J]. International Journal of Rock Mechanics and Mining Sciences, Elsevier Ltd., 112 (8): 158-170. http://www.sciencedirect.com/science/article/pii/S1365160917313291
    Xia H C, Wu A Q, Lu B, et al. 2021. Influence mechanism of heterogeneity on mechanical properties of rock materials[J]. Journal of Yangtze River Scientific Research Institute, 38 (3): 103-109.
    Yang J, Lu W, Hu Y, et al. 2015. Numerical simulation of rock mass damage evolution during deep-buried tunnel excavation by drill and blast[J]. Rock Mechanics and Rock Engineering, 48 (5): 2045-2059. doi: 10.1007/s00603-014-0663-0
    Zhao H J, Dwayne Tannant, Guo J, et al. 2019. Numerical study on fracture propagation and interaction using continuous-discontinuous failure method[J]. Journal of Engineering Geology, 27 (5): 933-945. http://en.cnki.com.cn/Article_en/CJFDTotal-GCDZ201905001.htm
    柏建彪, 侯朝炯. 2006. 深部巷道围岩控制原理与应用研究[J]. 中国矿业大学学报, 35 (2): 145-148. doi: 10.3321/j.issn:1000-1964.2006.02.001
    戴峰, 李彪, 徐奴文, 等. 2015. 猴子岩水电站深埋地下厂房开挖损伤区特征分析[J]. 岩石力学与工程学报, 34 (4): 735-746. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201504010.htm
    高富强. 2019. 数值模拟在地下煤矿开采岩石力学问题中的应用[J]. 采矿与岩层控制工程学报, 1(1): 013004. https://www.cnki.com.cn/Article/CJFDTOTAL-MKKC201902009.htm
    江权, 史应恩, 蔡美峰, 等. 2019. 深部岩体大变形规律: 金川二矿巷道变形与破坏现场综合观测研究[J]. 煤炭学报, 44 (5): 1337-1348. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201905006.htm
    康红普, 范明建, 高富强, 等. 2015. 超千米深井巷道围岩变形特征与支护技术[J]. 岩石力学与工程学报, 34 (11): 2227-2241. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201511006.htm
    李光, 马凤山, 刘港, 等. 2018. 金川矿区深部巷道支护效果评价及参数优化研究[J]. 黄金科学技术, 26 (5): 605-614. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKJ201805010.htm
    李夕兵, 姚金蕊, 宫凤强. 2011. 硬岩金属矿山深部开采中的动力学问题[J]. 中国有色金属学报, 21 (10): 2551-2563. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201110023.htm
    刘港, 马凤山, 赵海军, 等. 2018. 考虑统计损伤模型的非均质节理岩体拉剪破坏机制研究[J]. 岩土力学, 39 (S1): 9-20. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2018S1003.htm
    马凤山, 卢蓉, 郭捷, 等. 2019. 金川二矿区大体积充填体变形的三维数值模拟[J]. 工程地质学报, 27 (1): 14-20. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201901002.htm
    孙琪皓, 马凤山, 赵海军, 等. 2018. 地下工程岩体开挖损伤区的研究现状[J]. 工程地质学报, 26 (S1): 358-370. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-GCDZ201810001050.htm
    孙琪皓, 马凤山, 赵海军, 等. 2019. 基于渗流-损伤-应力耦合作用下考虑力学参数弱化的巷道围岩变形破坏分析[J]. 工程地质学报, 27 (5): 955-965. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201905003.htm
    王志文, 赵海军, 马凤山, 等. 2019. 非均质共面断续节理岩体拉伸剪切破裂机制研究[J]. 工程地质学报, 27 (5): 989-999. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201905007.htm
    夏海城, 邬爱清, 卢波, 等. 2021. 非均质性对岩石宏观力学特性的影响机制[J]. 长江科学院院报, 38 (3): 103-109. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB202103019.htm
    赵海军, Dwayne Tannant, 郭捷, 等. 2019. 基于连续-非连续方法的裂隙破坏与相互作用研究[J]. 工程地质学报, 27 (5): 933-945. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201905001.htm
  • 加载中
图(20) / 表(5)
计量
  • 文章访问数:  58
  • HTML全文浏览量:  30
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-08
  • 修回日期:  2021-07-15
  • 网络出版日期:  2021-09-03
  • 刊出日期:  2021-09-03

目录

    /

    返回文章
    返回