广西地区炭质岩基本物质组成及其对崩解特性的影响

邵羽 米德才 叶琼瑶 唐正辉 刘先林

邵羽, 米德才, 叶琼瑶, 等. 2023. 广西地区炭质岩基本物质组成及其对崩解特性的影响[J]. 工程地质学报, 31(5): 1588-1596. doi: 10.13544/j.cnki.jeg.2021-0321
引用本文: 邵羽, 米德才, 叶琼瑶, 等. 2023. 广西地区炭质岩基本物质组成及其对崩解特性的影响[J]. 工程地质学报, 31(5): 1588-1596. doi: 10.13544/j.cnki.jeg.2021-0321
Shao Yu, Mi Decai, Ye Qiongyao, et al. 2023. Basic material composition of carbonaceous rocks in Guangxi Province and its influence on engineering geological characteristics[J]. Journal of Engineering Geology, 31(5): 1588-1596. doi: 10.13544/j.cnki.jeg.2021-0321
Citation: Shao Yu, Mi Decai, Ye Qiongyao, et al. 2023. Basic material composition of carbonaceous rocks in Guangxi Province and its influence on engineering geological characteristics[J]. Journal of Engineering Geology, 31(5): 1588-1596. doi: 10.13544/j.cnki.jeg.2021-0321

广西地区炭质岩基本物质组成及其对崩解特性的影响

doi: 10.13544/j.cnki.jeg.2021-0321
基金项目: 

广西科技计划项目 GuiKe AC16380119

广西自然科学基金重点项目 2020GXNSFDA238024

中国博士后科学基金资助项目 2019M663874XB

广西科技基地和人才专项 GuiKe AD20238069

详细信息
    作者简介:

    邵羽(1987-),男,博士,高级工程师,主要从事特殊岩土与地下工程方面的研究工作. E-mail: GXUGEO@126.com

    通讯作者:

    刘先林(1985-),男,硕士,高级工程师,主要从事特殊岩土与地下工程方面的研究工作. E-mail: 154461842@qq.com

  • 中图分类号: P584

BASIC MATERIAL COMPOSITION OF CARBONACEOUS ROCKS IN GUANGXI PROVINCE AND ITS INFLUENCE ON ENGINEERING GEOLOGICAL CHARACTERISTICS

Funds: 

the Science and Technology Project of Guangxi GuiKe AC16380119

Key Project of Natural Science Foundation of Guangxi 2020GXNSFDA238024

China Postdoctoral Science Foundation Funded Project 2019M663874XB

Special Fund for Science and Technology Bases and Talented Young Persons in Guangxi GuiKe AD20238069

  • 摘要: 炭质岩层常作为主要岩层或者夹层频繁出现在广西各时代地层单元中,因其易风化裂碎、崩解软化及工程性质对环境敏感,给广西地区公路工程建设带来诸多复杂问题。通过既有地质资料搜集、野外地质调查、取样测试等研究手段,对广西地区炭质岩的分布及组合特征、矿物组成、有机质特征开展研究,并对炭质岩崩解的影响因素及相应工程措施进行了探讨。研究表明:(1)广西地区炭质岩从新元古界至古近系均有分布,主要包括24个地层单元,其基本物质组成以黏土矿物、石英和碳酸盐岩矿物为主,且有机质含量较高,属于中-高级烃源岩的炭质岩类;(2)炭质岩所含黏土矿物中的伊利石和伊/蒙混层、高含量有机质以及硫化物是炭质岩在自然暴露状态下发生崩解的主要物质因素;(3)炭质岩边坡发生崩解的主要原因可分为4类:构造活动、黏土矿物的吸水膨胀性和受热脱水性、有机质和还原性矿物氧化分解反应、自然因素的影响。相关研究成果可为炭质岩地区边坡工程、隧道工程及路基工程的设计施工及处治工作提供重要参考。
  • 图  1  广西区内炭质岩分布图

    Figure  1.  Distribution of carbonaceous rocks in Guangxi Province

    图  2  中泥盆统罗富组炭质岩薄片显微照片

    Figure  2.  Microscope images of Middle Devonian carbonaceous rocks sections from Luofu Formation

    图  3  塘丁组炭质岩干酪根显微组分及有机质类型

    Figure  3.  Maceral of organic kerogen for carbonaceous rocks of Luzhai Formation

    图  4  罗富组炭质岩干酪根显微组分及有机质类型

    Figure  4.  Maceral of organic kerogen for carbonaceous rocks of Luofu Formation

    图  5  鹿寨组炭质岩干酪根显微组分及有机质类型

    Figure  5.  Maceral of organic kerogen and types of organic matter for carbonaceous rocks of Luzhai Formation

    图  6  炭质硅质岩、炭质泥岩中的褶皱构造

    Figure  6.  Fold structure in the carbonaceous-siliceous rocks

    图  7  英塘组受热崩解的炭质泥岩

    Figure  7.  Disintegrated carbonaceous mudstone of

    图  8  炭质页岩表面絮状硫化物

    Figure  8.  Flocculent sulfide on the surface of carbonaceous shale

    表  1  炭质泥页岩矿物成分

    Table  1.   Mineral composition for carbonaceous shale

    所属组 样品编号 黏土矿物/% 石英/% 长石/% 方解石/% 白云石/% 菱铁矿/% 硬石膏/% 黄铁矿/%
    高岭石 绿泥石 伊利石 蒙脱石 伊/蒙混层 绿/蒙混层
    塘丁组(D1-2t) TD-1 0.8 6.5 4.7 0 29.5 0.5 37.9 2.0 2.0 13.0 0.9 1.1 0.9
    TD-2 1.2 5.5 4.3 0 29.6 0.4 32.9 2.0 10 10.1 1.1 0.9 1.9
    TD-3 1.0 3.9 8.0 0 25.0 0.1 37.0 2.2 16.9 3.0 0.9 1.1 0.9
    罗富组(D2l) LF-1 3.0 5.6 4.6 0 27.7 0 33.1 3.3 12.8 8.7 1.2 0 0
    LF-2 2.5 6.9 9.3 0 36.5 0 31.2 3.9 1.1 3.5 2.1 2.3 0.8
    LF-3 2.1 4.9 6.9 0 21.0 0 36.4 3.1 2.3 11.1 9.7 1.0 1.5
    鹿寨组(C1lz) LZ-1 2.5 0 3.6 0 42.7 0 44.9 0 0 5.3 0 0.8 0.2
    LZ-2 0 2.5 4.5 0 36.8 0 35.2 1.2 9.8 7.6 1.4 0.9 0
    LZ-3 0.6 3.1 4.2 0 27.7 4.0 36.0 0 6.9 16.6 0 0 0.9
    英塘组(C1yt) YT-1 0 0.4 8.1 0 31.6 0 51.6 0 7.6 0 0 0 0.6
    YT-2 0.3 2.0 10.1 0 28.4 2.0 42.9 1.0 5.9 3.5 1.9 1.5 0.5
    YT-3 0 0.4 9.2 0 35.7 0 35.6 3.5 10.1 2.3 0.9 1.4 0.9
    下载: 导出CSV

    表  2  炭质岩类型分类

    Table  2.   Classification of carbonaceous rocks

    岩石类型 TOC含量
    <0.5% 0.5%~1% 1%~4% ≥4%
    无页理 泥岩 含炭泥岩 炭质泥岩 高炭泥岩
    有页理 页岩 含炭页岩 炭质页岩 高炭页岩
    下载: 导出CSV

    表  3  中-下泥盆统塘丁组炭质页岩TOC统计表

    Table  3.   Statistical table for the total organic carbon content of carbonaceous shale in the Tangding Formation of Middle-Lower Devonian

    采样位置 最小值/% 最大值/% 平均值/% 样品个数 数据来源
    南丹同贡 0.36 0.61 0.47 3 实测
    罗富剖面 0.65 4.70 1.85 25 页岩气地质调查
    桂页1井 0.53 6.21 2.41 页岩气地质调查
    下载: 导出CSV

    表  4  中泥盆统罗富组炭质页岩TOC统计表

    Table  4.   Statistical table for the total organic carbon content of carbonaceous shale in the Luofu Formation of Middle Devonian

    采样位置 最小值/% 最大值/% 平均值/% 样品个数 数据来源
    南丹车河 0.11 0.81 0.37 6 实测
    南丹大厂 0.54 4.74 3.14 14 页岩气地质调查
    桂页1井 0.23 3.96 1.44 50 页岩气地质调查
    下载: 导出CSV

    表  5  中下石炭统鹿寨组炭质页岩TOC统计表

    Table  5.   Statistical table for the total organic carbon content of carbonaceous shale in the Luzhai Formation of Lower carboniferous

    采样位置 最小值/% 最大值/% 平均值/% 样品个数 数据来源
    环江浅凹 0.73 3.37 1.62 30 实测
    柳城斜坡 0.89 3.90 2.65 11 页岩气地质调查
    宜山断凹 0.47 3.60 1.88 15 页岩气地质调查
    东塘1井 0.42 1.34 0.98 83 页岩气地质调查
    下载: 导出CSV

    表  6  干酪根镜检划分有机质类型表

    Table  6.   Type tables for organic matter by microscopic examination of kerogen

    类型 Ⅰ型(腐泥型) 1(腐植-腐泥型) 2(腐泥-腐植型) Ⅲ(腐植型)
    干酪根镜检 壳质组/% 70~90 70~50 50~10 <10
    镜质组/% <10 10~20 20~70 70~90
    TI 80~100 80~40 40~0 <0
    下载: 导出CSV
  • Cao Y J, Huang R Q, Zheng H J, et al. 2006. Slaking characteristics of soft rock of the engineering slope in a hydroelectric station in the southwest of China[J]. Journal of Engineering Geology, 14 (1): 35-40.
    Cheng X G, He Z Y, Liu M N, et al. 2023. Study on engineering geological characteristics and unfavorable geology subarea of Huaibei Paleogene red-bed[J]. Journal of Engineering Geology, 31(1): 228-239.
    Ding W L, Li C, Li C Y, et al. 2021. Dominant factor of fracture development in shale and its relationship to gas accumulation[J]. Earth Science Frontiers, 19 (2): 212-220.
    Fu H Y, Qiu X, Li G Y, et al. 2017. Dynamic stability of carbonaceous mudstone embankment under rainfall infiltration[J]. Journal of Chang'an University(Natural Science Edition), 37 (1): 33-42.
    Guo J, Yang J S, Chen W, et al. 2019. Research on large deformation of surrounding rock and mechanical characteristics of lining of carbonaceous slate tunnel based on field measurement[J]. Chinese Journal of Rock Mechanics and Engineering, 38 (4): 832-841.
    Li G W, Gong Q Q, Li T, et al. 2021. Experimental study on properties of weak expansive soil improved by disintegrated sandstone[J]. Journal of Engineering Geology, 29 (1): 34-43.
    Liao X, Wu X Y, Zhu B L. 2013. Chemical weathering characteristics of Cambrian black shale in northern Guangxi, China[J]. Journal of Central South University(Science and Technology), 44 (12): 4980-4988.
    Sun P, Yin Y P, Wu S R, et al. 2010. Experimental study of microstructure and mechanical properties of rocks from Donghekou landslide[J]. Chinese Journal of Rock Mechanics and Engineering, 29 (S1): 2872-2878.
    Teixeira M G, Donzé F, Renard F, et al. 2017. Microfracturing during primary migration in shales[J]. Tectonophysic, 694 : 268-279. doi: 10.1016/j.tecto.2016.11.010
    Teng J Y, Tang J X. 2017. Mechanism analysis of floor heave in layered carbonaceous shale tunnel[J]. Journal of Railway Science and Engineering, 14 (1): 110-116.
    The Professional Standards Compilation Group of People's Republic of China. Regulation of shale gas resources/reserves estimation(DZ/T0254-2014)[S]. Beijing: Standards Press of China.
    The Professional Standards Compilation Group of People's Republic of China. Geochemistry Evaluation Method for Land Facies Hydrocarbon Source Rock(SY/T 5735-1995)[S]. Beijing: Petroleum Industry Press.
    Tian S M. 2013. Deformation mechanism of black batt with high stress in Baozhen tunnel[J]. Journal of Beijing Jiaotong University, 37 (1): 21-26.
    Wang X Q, Yao H Y, Dai L, et al. 2021. Experimental study on slaking characteristics of red-bed soft rock in southern Anhui Province[J]. Chinese Journal of Underground Space and Engineering, 17 (3): 683-691.
    Yin L J, Zhao F D, Liu Z Q, et al. 2020. Impact factors and mechanism of red sandstone disintegration[J]. Rock and Soil Mechanics, .https://kns.cnki.net/kcms/detail/42.1199.O3.20201005.1729.003.html https://kns.cnki.net/kcms/detail/42.1199.O3.20201005.1729.003.html
    Zeng L, Luo J T, Hou P, et al. 2020a. Crack development and strength characteristics of pre-disintegrated carbonaceous mudstone under dry-wet cycles[J]. China Journal of Highway and Transport, 33 (9): 1-11.
    Zeng L, Xiao L Y, Liu J, et al. 2020b. Experiment study on road mechanical properties and permeability characteristics of pre-disintegration carbonaceous mudstone[J]. Journal of Railway Science and Engineering, 17 (1): 73-81.
    Zeng L, Qiu X, Fu H Y, et al. 2017. Analysis of stability of carbonaceous mudstone embankment after disintegration pretreatment during process of water level fluctuation[J]. China Journal of Highway and Transport, 30 (5): 10-19. doi: 10.3969/j.issn.1001-7372.2017.05.002
    Zeng L, Shi Z N, Fu H Y, et al. 2016. Road performance of preliminary disintegration of carbon mudstone and mechanical characteristics based on CT-Triaxial test[J]. Journal of Central South University(Science and Technology), 47 (6): 2030-2036.
    Zeng L, Yu H C, Gao Q F, et al. 2020. Mechanical behavior and microstructural mechanism of improved disintegrated carbonaceous mudstone[J]. Journal of Central South University, 27 (7): 1992-2002. doi: 10.1007/s11771-020-4425-8
    Zhao X Y, Li K P, Xiao D, et al. 2020. Slaking characteristics of silty mudstone under acid rain action based on fractal dimension[J]. Journal of Engineering Geology, 28 (2): 232-239.
    Zhou C Y, Deng Y M, Tan X S, et al. 2005. Experimental research on the softening of mechanical properties of saturated soft rocks and application[J]. Chinese Journal of Rock Mechanics and Engineering, 24 (1): 33-38.
    Zhou C Y, Jing X D, Liu Z. 2019. Disintegration characteristics and modification of weathered soil in red beds in Southern China[J]. Journal of Engineering Geology, 27 (6): 1253-1261.
    曹运江, 黄润秋, 郑海君, 等. 2006. 岷江上游某水电站工程边坡软岩的崩解特性研究[J]. 工程地质学报, 14 (1): 35-40. http://www.gcdz.org/article/id/8985
    程香港, 何昭宇, 刘梦楠, 等. 2023. 淮北古近系"红层"工程地质特性及不良地质分区研究[J]. 工程地质学报, 31(1): 228-239. doi: 10.13544/j.cnki.jeg.2020-273
    丁文龙, 李超, 李春燕, 等. 2012. 页岩裂缝发育主控因素及其对含气性的影响[J]. 地学前缘, 19 (2): 212-220. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201202031.htm
    付宏渊, 邱祥, 李光裕, 等. 2017. 降雨入渗条件下炭质泥岩路堤动态稳定性[J]. 长安大学学报(自然科学版), 37 (1): 33-42. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL201701005.htm
    郭健, 阳军生, 陈维, 等. 2019. 基于现场实测的炭质板岩隧道围岩大变形与衬砌受力特征研究[J]. 岩石力学与工程学报, 38 (4): 832-841. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201904019.htm
    李国维, 巩齐齐, 李涛, 等. 2021. 崩解性砂软岩改良弱膨胀土性状实验研究[J]. 工程地质学报, 29 (1): 34-43. doi: 10.13544/j.cnki.jeg.2020-168
    廖昕, 巫锡勇, 朱宝龙. 2013. 桂北地区寒武系黑色页岩化学风化特征[J]. 中南大学学报(自然科学版), 44 (12): 4980-4988. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201312029.htm
    孙萍, 殷跃平, 吴树仁, 等. 2010. 东河口滑坡岩石微观结构及力学性质试验研究[J]. 岩石力学与工程学报, 29 (S1): 2872-2878. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2010S1044.htm
    腾俊洋, 唐建新. 2017. 层状炭质页岩隧道底鼓机理分析[J]. 铁道科学与工程学报, 14 (1): 110-116. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201701017.htm
    田四明. 2013. 堡镇隧道高地应力炭质页岩的变形破坏机制[J]. 北京交通大学学报, 37 (1): 21-26. https://www.cnki.com.cn/Article/CJFDTOTAL-BFJT201301005.htm
    王晓强, 姚华彦, 代领, 等. 2021. 皖南红层软岩崩解特性试验分析[J]. 地下空间与工程学报, 17 (3): 683-691. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE202103006.htm
    尹利洁, 赵福登, 刘志强, 等. 2020. 红砂岩崩解速率影响因素及崩解机理研究[J]. 岩土力学, https://kns.cnki.net/kcms/detail/42.1199.O3.20201005.1729.003.html. https://kns.cnki.net/kcms/detail/42.1199.O3.20201005.1729.003.html
    曾铃, 罗锦涛, 侯鹏, 等. 2020a. 干湿循环作用下预崩解炭质泥岩裂隙发育规律及强度特性[J]. 中国公路学报, 33 (9): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202009002.htm
    曾铃, 肖柳意, 刘杰, 等. 2020b. 预崩解炭质泥岩路堤填料工程性能试验研究[J]. 铁道科学与工程学报, 17 (1): 73-81. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD202001010.htm
    曾铃, 邱祥, 付宏渊, 等. 2017. 水位升降过程中崩解预处理炭质泥岩路堤稳定性分析[J]. 中国公路学报, 30 (5): 10-19. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201705002.htm
    曾铃, 史振宁, 付宏渊, 等. 2016. 预崩解炭质泥岩路用性能及其基于三轴CT试验的力学特性[J]. 中南大学学报(自然科学版), 47 (6): 2030-2036. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201606029.htm
    赵晓彦, 李昆鹏, 肖典, 等. 2020. 基于分形理论的粉砂质泥岩酸雨崩解特征研究[J]. 工程地质学报, 28 (2): 232-239. doi: 10.13544/j.cnki.jeg.2019-368
    中华人民共和国行业标准编写组. 1995. 陆相烃源岩地球化学评价方法(SY/T 5735-1995)[S]. 北京: 石油工业出版社.
    中华人民共和国行业标准编写组. 2014. DZ/T0254-2014页岩气资源/储量计算与评价技术规范(DZ/T0254-2014)[S]. 北京: 中国标准出版社.
    周翠英, 邓毅梅, 谭祥韶, 等. 2005. 饱水软岩力学性质软化的试验研究与应用[J]. 岩石力学与工程学报, 24 (1): 33-38. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200501005.htm
    周翠英, 景兴达, 刘镇. 2019. 华南红层风化土崩解特性及其改性研究[J]. 工程地质学报, 27 (6): 1253-1261. doi: 10.13544/j.cnki.jeg.2018-288
  • 加载中
图(8) / 表(6)
计量
  • 文章访问数:  61
  • HTML全文浏览量:  6
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-10
  • 修回日期:  2021-09-12
  • 刊出日期:  2023-10-25

目录

    /

    返回文章
    返回