矿山垮落大体积松散体中水泥-水玻璃浆液可控灌注原理及其应用

于世波 王志修 原野 王贺

于世波, 王志修, 原野, 等. 2021. 矿山垮落大体积松散体中水泥-水玻璃浆液可控灌注原理及其应用[J]. 工程地质学报, 29(4): 1094-1104. doi: 10.13544/j.cnki.jeg.2021-0322
引用本文: 于世波, 王志修, 原野, 等. 2021. 矿山垮落大体积松散体中水泥-水玻璃浆液可控灌注原理及其应用[J]. 工程地质学报, 29(4): 1094-1104. doi: 10.13544/j.cnki.jeg.2021-0322
Yu Shibo, Wang Zhixiu, Yuan Ye, et al. 2021. Principle and application of controllable grouting of cement-sodium silicate slurry in large loose rock mass due to mining caving[J]. Journal of Engineering Geology, 29(4): 1094-1104. doi: 10.13544/j.cnki.jeg.2021-0322
Citation: Yu Shibo, Wang Zhixiu, Yuan Ye, et al. 2021. Principle and application of controllable grouting of cement-sodium silicate slurry in large loose rock mass due to mining caving[J]. Journal of Engineering Geology, 29(4): 1094-1104. doi: 10.13544/j.cnki.jeg.2021-0322

矿山垮落大体积松散体中水泥-水玻璃浆液可控灌注原理及其应用

doi: 10.13544/j.cnki.jeg.2021-0322
基金项目: 

国家自然科学基金 41602365

详细信息
    通讯作者:

    于世波(1985-),男,博士生,高级工程师,主要从事深部采矿岩体力学与工程灾害控制方面的研究工作. E-mail:yushibo_mymy@163.com

  • 中图分类号: X936

PRINCIPLE AND APPLICATION OF CONTROLLABLE GROUTING OF CEMENT-SODIUM SILICATE SLURRY IN LARGE LOOSE ROCK MASS DUE TO MINING CAVING

Funds: 

National Natural Science Foundation of China 41602365

  • 摘要: 松散体是采矿、隧道、地下空间等工程中一种常见的岩体结构,具有强度低、稳定性差等特点,注浆改造重构其完整性和强度是现场处理该类问题的重要技术手段之一。为满足河北杏山铁矿大垮塌主溜井满井状态下封堵工程的特殊需求,提出了大体积松散体中水泥-水玻璃浆液可控灌注的理念。通过大体积松散体中水泥-水玻璃浆液灌注试验研究,将灌注历程分为大空隙竖向优势渗流、大空隙周边渗流、上向渗流结石、第1层劈裂与渗流和第n层劈裂与渗流5个阶段。根据浆液扩散的时空演化,将可控灌注问题分解为浆液一维竖向优势渗流和单段灌注浆的周向时空扩散,并揭示了其发生机理,认为松散体中水泥-水玻璃浆液一维竖向优势渗流的扩散距离与时间呈以自然常数e为底的指数函数关系。以此为基础,将松散体中水泥-水玻璃浆液可控灌注应用于杏山铁矿大垮塌主溜井满井状态下的封堵工程中,取得了良好的工程效果。
  • 图  1  现场松散堆体灌注试验

    a. 试验现场全貌;b. 试验设备

    Figure  1.  Grouting test for loose rock mass in the field

    图  2  4种方案的松散堆体灌注结石形态

    a. 方案1(无压力);b. 方案2(0.2 MPa);c. 方案3(0.2 MPa);d. 方案4(0.2 MPa)

    Figure  2.  Stone forms of grouting test for loose rock mass body in the four schemes

    图  3  松散堆体中水泥-水玻璃浆液扩散及压力发展过程

    Figure  3.  Propagation and pressure development of cement-sodium silicate slurry in the loose rock mass

    图  4  水泥-水玻璃浆液黏度测定及其黏度特征

    Figure  4.  Determination and viscosity characteristics of cement-sodium silicate slurry

    图  5  松散体中水泥-水玻璃浆液灌注的竖向扩散距离对比分析

    Figure  5.  Comparative analysis for vertical diffusion distance of cement-sodium silicate slurry in the loose rock mass

    图  6  松散体中浆液分层劈裂与渗流过程的力学模型及特征

    a. 松散体中灌注浆分层劈裂与渗流过程的力学模型;b. 分层劈裂与渗流特征

    Figure  6.  Mechanical model and characteristics of layered splitting and seepage process in the loose rock mass

    图  7  水泥-水玻璃浆液劈裂结石体的简化力学模型

    Figure  7.  Simplified mechanical model of cement-sodium silicate slurry to split grouted mass

    图  8  水泥-水玻璃浆液结石体的短期抗压强度特征

    a. 浆液结石体短期抗压强度破坏后试件;b. 浆液结石体短期抗压强度曲线

    Figure  8.  Rc characteristics in the short term of the grouted mass of cement-sodium silicate slurry

    图  9  主溜井的现状

    a. 主溜井附近井巷工程布置;b. -330 m水平主溜井垮塌情况

    Figure  9.  The status of main ore pass

    图  10  主溜井封堵工程的设计思想

    Figure  10.  Design idea of the plugging project of the main ore pass

    图  11  主溜井探测孔所取岩芯样品

    Figure  11.  Core samples taken from the exploration hole of the main ore pass

    图  12  封堵工程可控灌注浆钻孔的三维空间布置

    Figure  12.  Three dimensional layout of controllable grouting borehole in the plugging project

    图  13  大体积松散体中水泥-水玻璃浆液可控灌注方式

    Figure  13.  Controllable grouting method about cement-sodium silicate grout in the large loose rock mass

    图  14  主溜井可控灌注浆及封堵效果

    a. 观察通道注浆结石体;b. 结石体近景情况;c. 封堵全貌;d. 斜溜道口下放前后

    Figure  14.  Effect of controllable grouting and plugging for the main ore pass

    图  15  封堵区域空隙浆液填充率

    Figure  15.  Filling rate of grout in the void of loose rock mass in the plugging area

    图  16  监测锚索拉力变化曲线

    Figure  16.  Tension curves of monitoring cables

    表  1  灌注试验方案

    Table  1.   Scheme of grouting test

    方案 WC Vs∶Vc Na2HPO4掺量/% 凝结时间/s 段数 跟管放置角度/(°) 埋设位置 灌注对象 灌注水泥量/t 试验目的
    1 0.5︰1 0.5︰1 0 18 1 29 浅部 似均质碎石堆体 0.75 研究自重作用下浆液在松散体中的竖向渗流过程及结石体形态
    2 3 60 2 47 深部 1.50 研究自重作用下浆液在松散体中的竖向渗流过程及结石体形态
    3 3 60 3 10 深部 2.25 研究近水平方向布置跟管时分段灌浆过程及结石体形态
    4 3 60 1 0 深部 废石堆体 0.75 验证灌注浆在级配良好的废石堆体中的可灌注性和饱满度
    由于测试环境的温度不同,浆液凝结时间亦有差异
    下载: 导出CSV
  • Boschi K, Prisco C, Ciantia M. 2020. Micromechanical investigation of grouting in soils[J]. International Journal of Solids and Structures, 187 : 121-132. doi: 10.1016/j.ijsolstr.2019.06.013
    Cao H, Yu S B, Yang X C, et al. 2016. A grouting reinforcement method on heterogeneous loose rock mass: China, 201610648894.4[P]. 2016-11-09.
    Chen B, Zha K N. 2011. Excavation-process-stability control of soil similar slope by cement-silicate double solution grouting[C]//2011 International Conference on Remote ensing, Environment and Transportation Engineering. Nanjing: IEEE Press.
    Chen H, Yu S B, Wang Z X, et al. 2018. A new plugging technology and its application for the extensively collapsed ore pass in the non-empty condition[J]. Energies, 1599 (11): 1-15. http://www.mdpi.com/1996-1073/11/6/1599/pdf
    Chen Z M. 1994. Analytical algorithm for surrounding rock mechanics analysis[M]. Beijing: China Coal Industry Press.
    Fan C. 1994. Mathematical model of one dimensional steady debris flow[J]. Mechanics and Practice, 16 (1): 50-52. doi: 10.1136/inpract.16.1.50
    Gao X B, Li L H, 2020. Initiation mechanism of typical debris flow hazard in Hot Water River Basin and synergetic prevention study[J]. Journal of Engineering Geology, 28 (5): 1309-1408.
    Li S C, Pan D D, Xu Z H, et al. 2020. Numerical simulation of dynamic water grouting using quick-setting slurry in rock fracture: the Sequential Diffusion and Solidification(SDS)method[J]. Computers and Geotechnics, 122: 103497. doi: 10.1016/j.compgeo.2020.103497
    Li S C, Zhang Q S, Liu R T, et al. 2017. Analysis of fracturing grouting diffusion in sand considering filtration effects and its ALE algorithm[J]. Chinese Journal of Rock Mechanics and Engineering, 36(S2): 4167-4176. http://en.cnki.com.cn/Article_en/CJFDTotal-YSLX2017S2051.htm
    Liu R T. 2012. Study on diffusion and plugging mechanism of quick setting cement based slurry in underground of dynamic water grouting and its application[D]. Jinan: Shandong University.
    Liu Z R, Ye W M, Zhang Z, et al. 2020. A review on packing and hydro-mechanical behavior of bentonite pellet mixtures[J]. Journal of Engineering Geology, 28 (2): 294-305.
    Lu Z X, Zhang Z Q, Zhang G J. 2017. Mechanism of hanging-up phenomena and its solving countermeasures in transportation of ore pass[J]. China Mining Magazine, 26 (4): 153-157. http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGKA201704030.htm
    Mu W Q, Li L C, Yang T H, et al. 2019. Numerical investigation on a grouting mechanism with slurry-rock coupling and shear displacement in a single rough fracture[J]. Bulletin of Engineering Geology and the Environment, 78 (8): 6159-6177. doi: 10.1007/s10064-019-01535-w
    Shen Y Q, Shen W, Li T L, et al. 2019. Numerical investigation on impact of bed entrainment to the mobility of rapid flow-like lansides[J]. Journal of Engineering Geology, 27 (6): 1405-1414. http://en.cnki.com.cn/Article_en/CJFDTotal-GCDZ201906023.htm
    Sui W H, Liu J Y, Hu W, et al. 2015. Experimental investigation on sealing efficiency of chemical grouting in rock fracture with flowing water[J]. Tunnelling and Underground Space Technology, 50 : 239-249. doi: 10.1016/j.tust.2015.07.012
    Wang P G, Wang Z D. 1995. The analysis of stability of Bingham fluid flowing down and inclined plane[J]. Applied Mathematics and Mechanics, 16 (10): 943-948. doi: 10.1007/BF02538835
    Wang S Y, Chan D H, Lam K C, et al. 2013. A new laboratory apparatus for studying dynamic coMpaction grouting into granular soils[J]. Soils and Foundations, 53 (3): 462-468. doi: 10.1016/j.sandf.2013.04.007
    Wang Y M. 2012. Modern mining manual[M]. Beijing: Metallurgical Industry Press.
    Wu A X, Sun Z Y, Liu X P. 2002. Granular dynamic theory and its application[M]. Beijing: Metallurgy Industry Press.
    Yang P. 2005. Study on simulation grouting experiment in gracel & mechanism of permeating grouting[D]. Changsha: Central South University.
    Zhang C, Liang J W, Zhang J, et al. 2018. Mechanism of Bingham fluid permeation and diffusion based on pulse injection[J]. Rock and Soil Mechanics, 39 (8): 2740-2746, 2754. http://www.researchgate.net/publication/331839128_Mechanism_of_Bingham_fluid_permeation_and_diffusion_based_on_pulse_injection
    Zhang Q S, Wang H B, Liu R T. et al. 2018. Infiltration grouting mechanism of porous media considering diffusion paths of grout[J]. Chinese Journal of Geotechnical Engineering, 40 (5): 918-924. http://en.cnki.com.cn/Article_en/CJFDTotal-YTGC201805021.htm
    Zhang Q S, Zhang L Z, Liu R T, et al. 2017. Grouting mechanism of quick setting slurry in rock fissure with consideration of viscosity variation with space[J]. Tunnelling and Underground Space Technology, 70 : 262-273. doi: 10.1016/j.tust.2017.08.016
    Zhou J W, Chen M L, Li H B, et al. 2019. Formation and movement mechanisms of water-induced landslides and hazard prevention and mitigation technologies[J]. Journal of Engineering Geology, 27 (5): 1131-1145. http://en.cnki.com.cn/Article_en/CJFDTotal-GCDZ201905025.htm
    Zhou X W, Gao G R. 2014. Grouting construction manual[M]. Beijing: China Coal Industry Press.
    Zhou Z F, Cao H D, Zhu M C, et al. 2018. Application of cement-sodium silicate mixed grout in control of water and sand bursting from roof of the working face[J]. Coal Geology & Exploration, 46 (6): 121-127. http://en.cnki.com.cn/Article_en/CJFDTotal-MDKT201806017.htm
    Zhu G X, Zhang Q S, Liu R T, et al. 2017. Analysis of fracturing grouting diffusion in sand considering filtration effects and its ALE algorithm[J]. Chinese Journal of Rock Mechanics and Engineering, 36 (S2): 4167-4176. http://en.cnki.com.cn/Article_en/CJFDTotal-YSLX2017S2051.htm
    曹辉, 于世波, 杨小聪, 等. 2016. 一种不均质松散体的注浆加固方法: 中国, 201610648894.4[P]. 2016-11-09.
    陈子荫. 1994. 围岩力学分析中的解析算法[M]. 北京: 煤炭工业出版社.
    范椿. 1994. 一维定常泥石流的数学模型[J]. 力学与实践, 16 (1): 50-52. https://www.cnki.com.cn/Article/CJFDTOTAL-LXYS401.012.htm
    高相波, 李丽慧. 2020. 热水河流域典型泥石流灾害成因机制与协同防治研究[J]. 工程地质学报, 28 (5): 1039-1048. doi: 10.13544/j.cnki.jeg.2020-288
    李术才, 张庆松, 刘人太, 等. 2017. 基于渗滤效应的沙层劈裂注浆扩散规律分析及其ALE算法[J]. 岩石力学与工程学报, 36(增2): 4167-4176. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2017S2051.htm
    刘人太. 2012. 水泥基速凝浆液地下工程动水注浆扩散封堵机理及应用研究[D]. 济南: 山东大学.
    刘樟荣, 叶为民, 张召, 等. 2020. 膨润土颗粒混合物的堆积性质与水-力特性研究进展[J]. 工程地质学报, 28 (2): 294-305. doi: 10.13544/j.cnki.jeg.2020-089
    路增祥, 张治强, 张国建. 2017. 溜井运输中悬拱产生的机理及解决对策[J]. 中国矿业, 26 (4): 153-157. doi: 10.3969/j.issn.1004-4051.2017.04.030
    沈月强, 沈伟, 李同录, 等. 2019. 基底侵蚀对高速流动性滑坡运动性影响的模拟分析[J]. 工程地质学报, 27 (6): 1405-1414. doi: 10.13544/j.cnki.jeg.2019-094
    王培光, 王振东. 1995. 宾汉流体沿斜面流动的稳定性分析[J]. 应用数学和力学, 16 (10): 943-948. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSX510.011.htm
    王运敏. 2012. 现代采矿手册[M]. 北京: 冶金工业出版社.
    吴爱祥, 孙业志, 刘湘平. 2002. 散体动力学理论及其应用[M]. 北京: 冶金工业出版社.
    杨坪. 2005. 砂卵(砾)石层模拟注浆试验及渗透注浆机制研究[D]. 长沙: 中南大学.
    张聪, 梁经纬, 张箭, 等. 2018. 基于脉动注浆的宾汉流体渗透扩散机制研究[J]. 岩土力学, 39 (8): 2740-2746, 2754. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201808004.htm
    张庆松, 王洪波, 刘人太, 等. 2018. 考虑浆液扩散路径的多孔介质渗透注浆机理研究[J]. 岩土工程学报, 40 (5): 918-924. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201805021.htm
    周家文, 陈明亮, 李海波, 等. 2019. 水动力型滑坡形成运动机理与防控减灾技术[J]. 工程地质学报, 27 (5): 1131-1145. doi: 10.13544/j.cnki.jeg.2019130
    周兴旺, 高岗荣. 2014. 注浆施工手册[M]. 北京: 煤炭工业出版社.
    周振方, 曹海东, 朱明诚, 等. 2018. 水泥-水玻璃双液浆在工作面顶板突水溃砂中的应用[J]. 煤田地质与勘探, 46 (6): 121-127. doi: 10.3969/j.issn.1001-1986.2018.06.017
    朱光轩, 张庆松, 刘人太, 等. 2017. 基于渗滤效应的沙层劈裂注浆扩散规律分析及其ALE算法[J]. 岩石力学与工程学报, 36(增2): 4167-4176. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2017S2051.htm
  • 加载中
图(16) / 表(1)
计量
  • 文章访问数:  63
  • HTML全文浏览量:  46
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-10
  • 修回日期:  2021-07-11
  • 网络出版日期:  2021-09-03
  • 刊出日期:  2021-09-03

目录

    /

    返回文章
    返回