我国煤矿离层涌突水致灾机理及其防控关键技术研究进展

张培森 朱慧聪 吴玉华 段中稳 牛辉 李复兴

张培森, 朱慧聪, 吴玉华, 等. 2021. 我国煤矿离层涌突水致灾机理及其防控关键技术研究进展[J]. 工程地质学报, 29(4): 1057-1070. doi: 10.13544/j.cnki.jeg.2021-0329
引用本文: 张培森, 朱慧聪, 吴玉华, 等. 2021. 我国煤矿离层涌突水致灾机理及其防控关键技术研究进展[J]. 工程地质学报, 29(4): 1057-1070. doi: 10.13544/j.cnki.jeg.2021-0329
Zhang Peisen, Zhu Huicong, Wu Yuhua, et al. 2021. State-of-the-art of mechanism of water inrush from bed separation and key technology of prevention and pre-control in China[J]. Journal of Engineering Geology, 29(4): 1057-1070. doi: 10.13544/j.cnki.jeg.2021-0329
Citation: Zhang Peisen, Zhu Huicong, Wu Yuhua, et al. 2021. State-of-the-art of mechanism of water inrush from bed separation and key technology of prevention and pre-control in China[J]. Journal of Engineering Geology, 29(4): 1057-1070. doi: 10.13544/j.cnki.jeg.2021-0329

我国煤矿离层涌突水致灾机理及其防控关键技术研究进展

doi: 10.13544/j.cnki.jeg.2021-0329
基金项目: 

国家重点研发计划项目子任务 2018YFC0604702

国家自然科学基金资助项目 51379119

山东省重点研发计划项目 2018GSF120009

详细信息
    作者简介:

    张培森(1977-),男,博士,教授,主要从事采矿工程与岩石力学等方面的教学和科研工作. E-mail:peisen_sky@163.com

    通讯作者:

    朱慧聪(1997-),男,硕士生,主要从事煤矿水害防治和岩石力学方面的研究. E-mail:zhuhuicongsdust@163.com

  • 中图分类号: TD741

STATE-OF-THE-ART OF MECHANISM OF WATER INRUSH FROM BED SEPARATION AND KEY TECHNOLOGY OF PREVENTION AND PRE-CONTROL IN CHINA

Funds: 

Sub Tasks of National Key R & D Plan 2018YFC0604702

National Natural Science Foundation of China 51379119

Key R & D Plan in Shandong Province 2018GSF120009

  • 摘要: 离层水害严重影响煤矿安全,明确其突水致灾机理及防控技术的研究现状对促进煤矿安全生产具有重要作用。本文系统地总结论述了离层动态发育机制、突水致灾机理和突水预测预控技术3个方面的研究进展。离层随工作面推进过程呈现动态发育的特征,当某一层位离层具备密闭可持续的离层空间、补水通道、稳定的补给水源、突水通道这4个条件后即存在突水致灾的可能。进而,当离层存在上位高强度岩层破断产生的强冲击、离层积水产生的静水压、采场持续性回采活动的强扰动3个动力源中的一个(及以上)时,离层即发生涌突水。对离层水害的治理可从预防和预控两个角度入手,预防手段包括基于实用矿山压力理论、关键层理论构建离层发育层位预判模型及通过调整工作面推进速度和采高、运用绿色开采技术等减缓覆岩的运移和沉降,预控手段包括超前疏放水、钻孔截流、地面排水等。最后,指出了当前离层水害的研究过程中亟待攻克的难题,如积水探测技术不够精准、超前疏放水技术体系不够完善等,并展望了光纤探测技术、“地面+井下”抽疏(截)联动预控方法、一种无损采矿方法等防治离层水害的新方向。
  • 图  1  离层动态发育时空分布规律

    Figure  1.  Temporal and spatial distribution of dynamic development of bed separation

    图  2  动+静突水示意图

    Figure  2.  Schematic diagram of dynamic and static water inrush

    图  3  离层空间接受补水前的状态

    Figure  3.  State of the bed separation space before receiving water recharge

    图  4  离层空间开始接受补水后的状态

    Figure  4.  State of the bed separation after receiving water recharge

    图  5  导流孔指向采空区侧分布

    Figure  5.  Distribution of diversion holes pointing to goaf side

    图  6  导流孔指向工作面侧分布

    Figure  6.  Distribution of diversion holes pointing to working face side

    图  7  导流孔布设剖面图

    Figure  7.  Cross section of diversion hole layout

    图  8  截流孔布设剖面图

    Figure  8.  Cross section of intercepting hole layout

    图  9  地面钻孔结构示意图

    Figure  9.  Structure diagram of surface variable diameter drilling

    图  10  地面钻孔布设剖面图

    Figure  10.  Layout profile of surface variable diameter boreholes

    图  11  “地面+井下”抽排(截)联动预控方法布置示意图

    Figure  11.  Layout diagram of "surface+underground" pumping (plugging) linkage pre-control method

    图  12  采充独立复合液压支架正视图(最大控顶距时)

    Figure  12.  Front view of mining and filling independent composite hydraulic support(maximum control distance)

    图  13  采充独立复合液压支架侧视图(最小控顶距时)

    Figure  13.  Side view of mining and filling independent composite hydraulic support(minimum control distance)

    图  14  无损采矿法巷道布置图

    Figure  14.  Roadway layout of non-destructive mining method

    表  1  煤矿典型离层水突水事故概况统计

    Table  1.   Statistics of typical water inrush accidents from bed separation in coal mines

    矿井 突水位置(工作面) 突水水源 突水诱因
    打通一矿 S1821 玉龙山及长兴灰岩水 覆岩受重复扰动,导水裂隙带发育高度增大,波及至离层隔水带将其切穿
    鱼田堡矿 2403 玉龙山及长兴灰岩水
    范各庄矿 3093S 5~12煤层间砂岩裂隙承压含水层水 覆岩破坏高度增加最终波及上部离层,造成离层水瞬时涌入工作面
    沙吉海煤矿 B1003W01 侏罗系中统西山窑组上段中-粗砂岩含水层水 导水裂隙带中的纵向裂隙发育至离层积水空间,积水瞬间溃出
    海孜煤矿 745 太原组砂岩含水层水 上覆巨厚火成岩达到极限破断距发生破断,产生的巨大冲击力压迫离层积水,使其破裂溃水
    杨柳煤矿 10414 石河子组砂岩含水层水 随采空区面积的扩大,火成岩悬露面积越来越大,达到极限破断距后发生断裂,断裂后离层积水区域被压缩从钻孔喷涌出地面,井下透水量也加大
    大明煤矿 EW416 第四系含水层水 随工作面的推进,离层上位岩层发生破断,积水水压瞬时增大,离层水经裂隙涌突至工作面
    华丰煤矿 1409 第三系砾岩水 第三系砾岩含水层水对离层空间进行充水,形成离层积水,当工作面推进到一定距离时,离层积水通过斑裂线涌入工作面形成突水事故
    大柳煤矿 1402 志丹群砂砾岩水 在当工作面回采至1420 m时,发生顶板离层水涌突
    南桐二井 5406 长兴灰岩水 上覆坚硬岩层下方出现离层并充水形成离层积水,覆岩重复扰动,导水裂隙发育高度波及到离层空间,造成顶板离层水涌突
    新集一矿 1307 片麻岩含水层水 工作面上方有一层坚硬的片麻岩,片麻岩下方均有泥质岩,随工作面的推进片麻岩和泥质岩之间形成离层空间并充水,工作面继续推进,片麻岩悬露面积越来越大,瞬时破断,造成工作面透水量增加
    新集二矿 113104
    老虎台矿 73003、73004 断层上盘白垩系砂砾岩含水层水 覆岩受采场重复扰动,破坏范围增大,波及到离层水体和断层水,发生顶板离层水事故。73004工作面透水机理与其相似
    济宁二号 11307 上侏罗统砂岩含水层水 煤层顶板上方60 m处发育有离层空间,导水裂隙带预计高度为55.3 m,上侏罗统砂岩含水层水为补给水源,为离层积水创造条件,具有潜在威胁
    红柳煤矿 1121 侏罗系直罗组底部粗砂岩裂隙含水层水 煤层顶板上方约50 m的位置处发育有离层空间,离层下部岩体为泥岩,泥岩遇水泥化形成封闭离层空间,随工作面推进,裂隙再次发育,离层水瞬间溃入工作面,形成周期性透水事故
    王楼煤矿 11305 侏罗系含水层水 离层空间发育到侏罗系砂岩底部并对其充水形成离层积水,随工作面的推进离层积水对下位岩体压力增大,最终突破离层下方完整泥岩发生涌水事故
    下载: 导出CSV
  • Bi P C, Che A L, Feng S K. 2021. Complex geological structure indentification and parameter estimation method based on 3D resistivity[J/OL]. Journal of Engineering Geology, 2020-03-14, https://doi.org/10.13544/j.cnki.jeg.2019-347.
    Cao D T. 2013. Hydrostatic water-inrush in bed separation and its prevention and control[J]. Hydrogeology and Engineering Geology, 40 (2): 9-12, 41. http://en.cnki.com.cn/Article_en/CJFDTOTAL-SWDG201302004.htm
    Cao H D. 2017. Mechanism and control technology of water inrush from secondary separated bed on coal seam roof[J]. Coal Geology and Exploration, 45 (6): 90-95. http://en.cnki.com.cn/Article_en/CJFDTOTAL-MDKT201706015.htm
    Chai J, Xue Z W, Guo R, et al. 2018. Experimental study of overlying mine strata collapse and its evolution by a distributed optical fiber system[J]. Journal of China University of Mining and Technology, 47 (6): 1185-1192. http://www.researchgate.net/publication/330080480_Experimental_study_of_overlying_mine_strata_collapse_and_its_evolution_by_a_distributed_optical_fiber_system
    Cheng L, Yang C W, Jing G X. 2016. Statistics analysis for regularity of coal mine accidents in China for the year of 2014[J]. Journal of Safety and Environment, 16 (4): 384-389. http://en.cnki.com.cn/Article_en/CJFDTOTAL-AQHJ201604078.htm
    Chu Y D. 2017. Roof sandstone water hazard features and control measures in Shicaocun coalmine, Yuanyanghu mining area, eastern Ningxia[J]. Coal Geology of China, 29 (2): 46-52. http://en.cnki.com.cn/Article_en/CJFDTotal-ZGMT201702010.htm
    Fan Y H. 2017. Prevention and control of roof separation water on fully-mechanized top coal caving face in extra-thick coal seam[J]. Coal Science and Technology Magazine, (3): 187-189. http://en.cnki.com.cn/Article_en/CJFDTotal-META201703065.htm
    He N. 2020. Safety evaluation on room pillar mining of steep thick orebody[J]. China Mining Magazine, 29 (7): 143-147. http://en.cnki.com.cn/Article_en/CJFDTotal-ZGKA202007025.htm
    Hu D X. 2010. Preliminary study on water inrush mechanism of huge thick overburden in Jining coalfield[J]. Energy Technology and Management, (1): 94-96.
    Jiang J Q, Wang P, Wu Q L, et al. 2015. Evolution laws and prediction of separated stratum space under overlying high-position magmatic rocks[J]. Chinese Journal of Geotechnical Engineering, 37 (10): 1769-1779. http://qikan.cqvip.com/Qikan/Article/Detail?id=666512911
    Jing J D, Shi L Q, Li Z L, et al. 2006. Mechanism of water-inrush from roof in Huafeng mine[J]. Journal of China University of Mining and Technology, 35 (5): 642-647. http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGKD200605015.htm
    Lei L J, Qiao W, Yuan Z B, et al. 2018. Dynamic recovery of cretaceous water resource above fully mechanized caving of Jurassic ultra-thick coal seam[J]. Journal of Engineering Geology, 26 (4): 1054-1063. http://en.cnki.com.cn/Article_en/CJFDTotal-GCDZ201804026.htm
    Lei W L, Chai J, Du W G, et al. 2019. Research progress of optical fiber sensing technology in geotechnical engineering[J]. Journal of Longdong University, 30 (2): 36-40. http://en.cnki.com.cn/Article_en/CJFDTotal-LDXS201902008.htm
    Li C, Wang J X. 2018. Control techniques for ordovician limestone karst water disaster with high-pressure in deep mining[J]. Safety in Coal Mines, 49 (2): 71-72, 76. http://en.cnki.com.cn/Article_en/CJFDTOTAL-MKAQ201802018.htm
    Li F R, Chen Z F, Wang H Z. 2009. Distribution rule and control techniques over bed separation water in coal seam roof[J]. Journal of Mining and Safety Engineering, 26 (2): 239-243. http://www.cnki.com.cn/Article/CJFDTotal-KSYL200902025.htm
    Li H J, Chen Q T, Mou Y. 2014. Research on prevention and mechanism of roof water inrush under low permeability aquifer for thick coal seam[J]. Coal Science and Technology, 42 (10): 28-31. http://en.cnki.com.cn/Article_en/CJFDTOTAL-MTKJ201410007.htm
    Li L, Shu Z Y, Feng Y F. 2018. Analysis and prevention on mechanism of water inrush from bed separation water of overburden by fully-mechanized top coal caving mining in ultra thick seam[J]. Coal Science and Technology, 46 (1): 175-182.
    Li W B, Wu P, Wang X J, et al. 2009. Probe into gently dipping strata roof stratifugic water jeopardizing on fully mechanized mining face and controlling[J]. Coal Geology of China, 21 (10): 42-45. http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGMT200910014.htm
    Li X Q. 2011. Study on the inrush mechanism of the water in bed separation due to repeated coal mining under hard rock[D]. Xuzhou: China University of Mining and Technology.
    Lin Q, Qiao W. 2016. Water prevention and control technology of roof bed separation in Cuimu Mine[J]. Coal Science and Technology, 44 (3): 129-134. http://www.cnki.com.cn/Article/CJFDTotal-MTKJ201603025.htm
    Ling Z Q, Deng J, Feng W L, et al. 2014. Cause analysis for roof water inrush accident at fully mechanized caving face in Zhaojin coal mine[J]. Safety in Coal Mines, 45 (8): 196-198, 202. http://www.zhangqiaokeyan.com/academic-journal-cn_safety-in-coal-mines_thesis/0201215464955.html
    Liu J G, Li X W, He T. 2020. Application status and prospect of backfill mining in Chinese coal mines[J]. Journal of China Coal Society, 45 (1): 141-150.
    Meng D, Wang J C, Wang J X. 2007. Mechanism on the failure and caving of roof strata in pillar and house mining[J]. Journal of China Coal Society, 32 (6): 577-580. http://www.cnki.com.cn/Article/CJFDTotal-MTXB200706005.htm
    Meng Z P. 1999. Sedimentary rock structure of coal seam roof and its influence on roof stability[D]. Beijing: China University of Mining and Technology.
    Miao Y W, Ye L. 2021. Analysis and prevention countermeasures of coal mine water disaster in China in 2020[J]. China Coal, 47 (2): 51-54.
    Qian M G, Miao X X, Xu J L. 1996. Theoretical study on key strata in strata control[J]. Journal of China Coal Society, 21 (3): 2-7. http://www.researchgate.net/publication/285467949_Theoretical_study_of_key_stratum_in_ground_control/amp
    Qian M G, Xu J L, Wang J C. 2018. Further on the sustainable mining of coal[J]. Journal of China Coal Society, 43 (1): 1-13. http://www.mtxb.com.cn/EN/abstract/abstract13578.shtml
    Qiao W, Li W P, Li X Q. 2011. Mechanism and prevention of "water inrush under hydrostatic pressure" of roof separation water[J]. Journal of Mining and Safety Engineering, 28 (1): 96-104. http://en.cnki.com.cn/Article_en/CJFDTOTAL-KSYL201101021.htm
    Qiao W, Li W P, Sun R H, et al. 2011. Formation mechanism of dynamic impact failure zone of super dynamic water inrush in coal mine[J]. Chinese Journal of Geotechnical Engineering, 33 (11): 1726-1733. http://www.cqvip.com/QK/95758X/201111/39783664.html
    Qiao W, Wang Z W, Li W P, et al. 2021. Formation mechanism, disaster-causing mechanism and prevention technology of roof bed separation water disaster in coal mines[J]. Journal of China Coal Society, 46 (2): 507-522.
    Shu Z Y, He B Q, Li L. 2020. Study on mechanism of separation strata water-inrush induced by impact energy of key strata abrupt breaking[J]. Coal Science and Technology, 48 (5): 149-156.
    Song Z Q, Hao J, Shi Y K, et al. 2019. An overview of connotation and development of "ground pressure control theory"[J]. Journal of Shandong University of Science and Technology(Natural Science), 38 (1): 1-15. http://en.cnki.com.cn/Article_en/CJFDTotal-SDKY201901001.htm
    Song Z Q, Jiang Y J, Liu J K. 2017. Theory and model of "practical method of mine pressure control"[J]. Coal Science and Technology Magazine, (2): 1-10. http://en.cnki.com.cn/Article_en/CJFDTotal-META201702002.htm
    Song Z Q. 1979. Basic law of overlying strata movement in stope[J]. Journal of Shandong University of Mining and Technology, (1): 64-77.
    Sui W H, Wang D D, Sun Y J, et al. 2019. Mine hydrogeological structure and its response to mining[J]. Journal of Engineering Geology, 27 (1): 21-28. http://en.cnki.com.cn/Article_en/CJFDTotal-GCDZ201901003.htm
    Sun C, Ji L, Yuan G Y. 2021. Trend analysis of China's coal supply and demand during the 14th Five-Year Plan[J]. Coal Engineering, 53 (5): 193-196.
    Sun K, Wang Y, Li C, et al. 2018. Mechanism of roof separation water disaster in thick coal seam[J]. Journal of Henan Polytechnic University(Natural Science), 37 (2): 14-21. http://en.cnki.com.cn/article_en/cjfdtotal-jgxb201802003.htm
    Sun W J, Han Q, Yang H, et al. 2016. Analysis on water inrush accidents in China's coal mines 2000-2015[J]. Coal Engineering, 49 (5): 95-98. http://en.cnki.com.cn/Article_en/CJFDTOTAL-MKSJ201705030.htm
    Sun X Y, Liu Z Q, Du R J, et al. 2016. Simulation on the progress of periodical water inrush caused by burst of water cells formed by overburden strata separation[J]. Journal of China Coal Society, 41 (S2): 510-516. http://www.researchgate.net/publication/316697711_Simulation_on_the_progress_of_periodical_water_inrush_caused_by_burst_of_water_cells_formed_by_overburden_strata_separation
    Wang G, Cui H L, Huang M T. 2018. Prevention and control of roof water damage in fully mechanized caving mining of super thick coal seam in Huanglong jurassic coal field[J]. Safety in Coal Mines, 49 (5): 95-98. http://en.cnki.com.cn/Article_en/CJFDTotal-MKAQ201805024.htm
    Wang J M, Yu D H. 2010. Simulation of water hazards caused by burst of water cells formed by overburden stratum separation[J]. Chinese Journal of Geotechnical Engineering, 32 (2): 231-236. http://www.researchgate.net/publication/283233448_Simulation_of_water_hazards_caused_by_burst_of_water_cells_formed_by_overburden_stratum_separation
    Wang Q, Hu X Z, Zhang X P. 2001. Determination of water bearing capacity of goaf, collapse column and fault in old coal mine by comprehensive geophysical prospecting technology[J]. China Coal, (5): 29-30, 14.
    Wang Z S, Chai J, Huang X C, et al. 2017. Research on overlying strata deformation based on distributed optical fiber sensing measure[J]. Coal Science and Technology, 45 (10): 196-202. http://en.cnki.com.cn/Article_en/CJFDTotal-MTKJ201710033.htm
    Wu K, Wang Y H, Deng K Z. 2000. Application of dynamic mechanics model of overlying strata movement and damage above goaf[J]. Journal of China University of Mining and Technology, (1): 34-36. http://www.researchgate.net/publication/292818646_Application_of_dynamic_mechanics_model_of_overlying_strata_movement_and_damage_above_goaf
    Wu L Y. 2020. Study on evolution mechanism of bed separation space water inrush in the overburden of coal seam[D]. Xuzhou: China University of Mining and Technology.
    Wu Q, Cui F P, Zhao S Q, et al. 2013. Type classification and main characteristics of mine water disasters[J]. Journal of China Coal Society, 38 (4): 561-565. http://www.cqvip.com/QK/96550X/201304/45722355.html
    Xie S R, Yue S S, Chen D D, et al. 2018. Deviatoric stress evolution laws and control of surrounding rock at gob-side entry retaining in deep backfilling mining[J]. Journal of China Coal Society, 43 (7): 1837-1846. http://en.cnki.com.cn/Article_en/CJFDTotal-MTXB201807006.htm
    Xie X D. 1992. Discussion on roof separation fissure water permeability in Nantong coal mine[J]. Mine Survey, (2): 15-19.
    Xie X D. 1997. Causes and prevention of water inrush from separated layer fissures in deep mining area of Nantong Coal Mine[J]. Coal Mine Safety, (1): 31-35.
    Xie X Z. 2012. Study on the characteristics of strata behavior in shallow seam longwall mining under the room-and-pillar mining goaf[J]. Journal of China Coal Society, 37 (6): 898-902. http://en.cnki.com.cn/Article_en/CJFDTOTAL-MTXB201206003.htm
    Xu J L, Qian M G, Jin H W. 2004. Study and application of bed separation distribution and development in the process of strata movement[J]. Chinese Journal of Geotechnical Engineering, 26 (5): 632-636. http://en.cnki.com.cn/Article_en/CJFDTOTAL-YTGC200405011.htm
    Yan F Q. 2020. Study on the dynamic evolution characteristics of overburden separation layer and the prevention and control of water damage in the separation layer in the mining of extra thick coal seam[D]. Qingdao: Shandong University of Science and Technology.
    Yang Q, Qiao W, Le J, et al. 2014. Analysis on formation condition of water in roof bed separation in fully mechanized face of extra-thick seam and evaluation of its risk[J]. Mining Safety and Environmental Protection, 41 (3): 64-66, 70. http://en.cnki.com.cn/Article_en/CJFDTOTAL-ENER201403018.htm
    Yu W J, Feng T, Wang W J, et al. 2012. Coordination support systems in mining with filling and mechanical behavior[J]. Chinese Journal of Rock Mechanics and Engineering, 31 (S1): 2803-2813. http://en.cnki.com.cn/Article_en/CJFDTotal-YSLX2012S1026.htm
    Zhang P S, An Y F, Wang W M, et al. 2017. An independent composite hydraulic support for mining and filling: China, CN206830216U[P]. 2018-01-02.
    Zhang P S, An Y F, Wang W M, et al. 2017. A non-destructive mining method: China, CN107120117A[P]. 2017-09-01.
    Zhang P S, An Y F, Wei J, et al. A rapid filling method for non-destructive mining: China, CN107091112B[P]. 2019-02-12.
    Zhang P S, Duan Z W, Wang Y Q, et al. 2019. Study on water disaster control technology of separation layer in North Anhui coal and power mining area[R]. Qingdao: Shandong University of Science and Technology.
    Zhang P S, Yan F Q, Sun Y N, et al. 2020. Water formation and inrush risk of overburden strata for extra-thick coal seam mining[J]. Safety in Coal Mines, 51 (7): 36-41.
    Zhang P S, Zhang R, Duan Z W, et al. 2020. A method of using surface drainage borehole to control roof separation water disaster in advance: China, CN111894672A[P]. 2020-11-06.
    Zhang P S, Zhang R, Duan Z W, et al. 2020. A surface pumping hole drainage method for roof separation water disaster of working face: China, CN111894671A[P]. 2020-11-06.
    Zhang W Q, Wang Z Y, Wu X T, et al. 2021. Investigation and simutation on the model and prevention technology of water inrush from roof bed separation[J]. Coal Geology and Exploration, 49 (1): 217-224, 231. http://www.researchgate.net/publication/350629310_Investigation_and_simutation_on_the_model_and_prevention_technology_of_water_inrush_from_roof_bed_separation
    Zhao D S, Su Z J, Sui H Q, et al. 1997. The Laboratory simulation research of slowing down the surface subsidence by seperated strata grout[J]. Journal of China Coal Society, (6): 13-17. http://www.researchgate.net/publication/284490231_The_laboratory_simulation_research_of_slowing_down_the_surface_subsidence_by_separated_strata_grout
    Zhao D S, Zhu G Z, Liu W S, et al. 2002. Test study on the space-time laws of overburden separated layer[J]. Journal of Liaoning Technical University(Natural Science), (1): 4-7. http://www.cnki.com.cn/Article/CJFDTotal-FXKY200201001.htm
    Zhou Y H. 2017. Discrimination of hidden danger of water disaster in roof separation layer of mining area[C]//China coal society, coal geology Professional Committee of China Geological Society, water disaster prevention Professional Committee of China coal industry safety science and technology society, coal mine water prevention expert committee of coal industry technology committee Shanxi coal society coal geology and environmental protection professional committee. 2017 coal safety and efficient green mining geological guarantee technology seminar paper collection.
    Zhu W B, Wang X Z, Kong X, et al. 2009. Study of mechanism of stope water inrush caused by water accumulation in overburden separation areas[J]. Chinese Journal of Rock Mechanics and Engineering, 28 (2): 306-311. http://d.wanfangdata.com.cn/Periodical/yslxygcxb200902012
    毕鹏程, 车爱兰, 冯少孔. 2021. 基于三维电测量的复杂地质构造识别及参数估计方法[J/OL]. 工程地质学报, 2020-03-24, https://doi.org/10.13544/j.cnki.jeg.2019-347.
    曹丁涛. 2013. 离层静水压突水及其防治[J]. 水文地质工程地质, 40 (2): 9-12, 41. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201302004.htm
    曹海东. 2017. 煤层顶板次生离层水体透水机理及防治技术[J]. 煤田地质与勘探, 45 (6): 90-95. doi: 10.3969/j.issn.1001-1986.2017.06.015
    柴敬, 薛子武, 郭瑞, 等. 2018. 采场覆岩垮落形态与演化的分布式光纤检测试验研究[J]. 中国矿业大学学报, 47 (6): 1185-1192. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201806004.htm
    程磊, 杨朝伟, 景国勋. 2016.2014年我国煤矿事故统计与规律分析[J]. 安全与环境学报, 16 (4): 384-389. https://www.cnki.com.cn/Article/CJFDTOTAL-AQHJ201604078.htm
    褚彦德. 2017. 宁东鸳鸯湖矿区石槽村煤矿顶板砂岩水害特征及防治对策[J]. 中国煤炭地质, 29 (2): 46-52. doi: 10.3969/j.issn.1674-1803.2017.02.10
    樊银辉. 2017. 特厚煤层综放面顶板离层水害防治[J]. 煤炭科技, (3): 187-189. doi: 10.3969/j.issn.1008-3731.2017.03.064
    何宁. 2020. 急倾斜厚层矿体房柱式开采安全性评价[J]. 中国矿业, 29 (7): 143-147. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA202007025.htm
    胡东祥. 2010. 济宁煤田巨厚覆岩离层突水机理初探[J]. 能源技术与管理, (1): 94-96. doi: 10.3969/j.issn.1672-9943.2010.01.036
    蒋金泉, 王普, 武泉林, 等. 2015. 上覆高位岩浆岩下离层空间的演化规律及其预测[J]. 岩土工程学报, 37 (10): 1769-1779. doi: 10.11779/CJGE201510004
    解兴智. 2012. 浅埋煤层房柱式采空区下长壁开采矿压显现特征[J]. 煤炭学报, 37 (6): 898-902. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201206003.htm
    景继东, 施龙青, 李子林, 等. 2006. 华丰煤矿顶板突水机理研究[J]. 中国矿业大学学报, 35 (5): 642-647. doi: 10.3321/j.issn:1000-1964.2006.05.016
    雷利剑, 乔伟, 袁中帮, 等. 2018. 侏罗系特厚煤层综放开采白垩系覆岩水资源恢复动态研究[J]. 工程地质学报, 26 (4): 1054-1063. doi: 10.13544/j.cnki.jeg.2017-324
    雷武林, 柴敬, 杜文刚, 等. 2019. 光纤传感技术在岩土工程中的研究进展[J]. 陇东学院学报, 30 (2): 36-40. doi: 10.3969/j.issn.1674-1730.2019.02.008
    黎灵, 舒宗运, 冯宇锋. 2018. 特厚煤层综放开采覆岩离层水突水机理分析及防治[J]. 煤炭科学技术, 46 (1): 175-182. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201801025.htm
    李冲, 王君现. 2018. 深部煤层开采高承压奥灰水害防治关键技术[J]. 煤矿安全, 49 (2): 71-72, 76. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ201802018.htm
    李凤荣, 陈真富, 王和志. 2009. 煤层顶板离层水体分布规律及防治技术探讨[J]. 采矿与安全工程学报, 26 (2): 239-243. doi: 10.3969/j.issn.1673-3363.2009.02.023
    李宏杰, 陈清通, 牟义. 2014. 巨厚低渗含水层下厚煤层顶板水害机理与防治[J]. 煤炭科学技术, 42 (10): 28-31. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201410007.htm
    李吴波, 吴鹏, 王现金, 等. 2009. 缓倾斜地层顶板离层水对综采工作面的危害及防治探讨[J]. 中国煤炭地质, 21 (10): 42-45. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMT200910014.htm
    李小琴. 2011. 坚硬覆岩下重复采动离层水涌突机理研究[D]. 徐州: 中国矿业大学.
    林青, 乔伟. 2016. 崔木煤矿顶板离层水防治技术[J]. 煤炭科学技术, 44 (3): 129-134. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201603025.htm
    凌志强, 邓军, 冯武林, 等. 2014. 照金煤矿综放工作面顶板突水事故原因分析[J]. 煤矿安全, 45 (8): 196-198, 202. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ201408059.htm
    刘建功, 李新旺, 何团. 2020. 我国煤矿充填开采应用现状与发展[J]. 煤炭学报, 45 (1): 141-150. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202001015.htm
    孟达, 王家臣, 王进学. 2007. 房柱式开采上覆岩层破坏与垮落机理[J]. 煤炭学报, 32 (6): 577-580. doi: 10.3321/j.issn:0253-9993.2007.06.005
    孟召平. 1999. 煤层顶板沉积岩体结构及其对顶板稳定性的影响[D]. 北京: 中国矿业大学.
    苗耀武, 叶兰. 2021.2020年全国煤矿水害事故分析及其防治对策[J]. 中国煤炭, 47 (2): 51-54. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGME202102008.htm
    钱鸣高, 缪协兴, 许家林. 1996. 岩层控制中的关键层理论研究[J]. 煤炭学报, 21 (3): 2-7. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB603.000.htm
    钱鸣高, 许家林, 王家臣. 2018. 再论煤炭的科学开采[J]. 煤炭学报, 43 (1): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201801002.htm
    乔伟, 李文平, 李小琴. 2011a. 采场顶板离层水"静水压涌突水"机理及防治[J]. 采矿与安全工程学报, 28 (1): 96-104. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201101021.htm
    乔伟, 李文平, 孙如华, 等. 2011b. 煤矿特大动力突水动力冲破带形成机理研究[J]. 岩土工程学报, 33 (11): 1726-1733. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201111015.htm
    乔伟, 王志文, 李文平, 等. 2021. 煤矿顶板离层水害形成机制、致灾机理及防治技术[J]. 煤炭学报, 46 (2): 507-522. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202102016.htm
    舒宗运, 何标庆, 黎灵. 2020. 关键层突变破断的冲击能诱发离层突水机理研究[J]. 煤炭科学技术, 48 (5): 149-156. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ202005021.htm
    宋振骐, 郝建, 石永奎, 等. 2019. "实用矿山压力控制理论"的内涵及发展综述[J]. 山东科技大学学报(自然科学版), 38 (1): 1-15. https://www.cnki.com.cn/Article/CJFDTOTAL-SDKY201901001.htm
    宋振骐, 蒋宇静, 刘建康. 2017. "实用矿山压力控制"的理论和模型[J]. 煤炭科技, (2): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-META201702002.htm
    宋振骐. 1979. 采场上覆岩层运动的基本规律[J]. 山东矿业学院学报, (1): 64-77. https://www.cnki.com.cn/Article/CJFDTOTAL-SDKY197901004.htm
    隋旺华, 王丹丹, 孙亚军, 等. 2019. 矿山水文地质结构及其采动响应[J]. 工程地质学报, 27 (1): 21-28. doi: 10.13544/j.cnki.jeg.2019-072
    孙超, 姜琳, 袁广玉. 2021. "十四五"期间我国煤炭供需趋势分析[J]. 煤炭工程, 53 (5): 193-196. https://www.cnki.com.cn/Article/CJFDTOTAL-MKSJ202105037.htm
    孙魁, 王英, 李成, 等. 2018. 巨厚煤层顶板离层水致灾机理研究[J]. 河南理工大学学报(自然科学版), 37 (2): 14-21. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXB201802003.htm
    孙文洁, 韩权, 杨恒, 等. 2017.2000~2015年我国煤矿水害事故特征分析[J]. 煤炭工程, 49 (5): 95-98. https://www.cnki.com.cn/Article/CJFDTOTAL-MKSJ201705030.htm
    孙学阳, 刘自强, 杜荣军, 等. 2016. 煤层顶板次生离层水周期突水致灾过程模拟[J]. 煤炭学报, 41 (S2): 510-516. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2016S2031.htm
    王冠, 崔宏磊, 黄美涛. 2018. 黄陇侏罗纪煤田特厚煤层综放开采顶板水害防治技术[J]. 煤矿安全, 49 (5): 95-98. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ201805024.htm
    王经明, 喻道慧. 2010. 煤层顶板次生离层水害成因的模拟研究[J]. 岩土工程学报, 32 (2): 231-236. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201002014.htm
    王强, 胡向志, 张兴平. 2001. 利用综合物探技术确定煤矿老窑采空区、陷落柱及断层的赋水性[J]. 中国煤炭, (5): 29-30, 14. doi: 10.3969/j.issn.1006-530X.2001.05.010
    王正帅, 柴敬, 黄旭超, 等. 2017. 采场覆岩变形分布式光纤测量研究[J]. 煤炭科学技术, 45 (10): 196-202. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201710033.htm
    吴侃, 王悦汉, 邓喀中. 2000. 采空区上覆岩层移动破坏动态力学模型的应用[J]. 中国矿业大学学报, (1): 34-36. doi: 10.3321/j.issn:1000-1964.2000.01.008
    吴禄源. 2020. 煤层覆岩离层突水灾害演变机理研究[D]. 徐州: 中国矿业大学.
    武强, 崔芳鹏, 赵苏启, 等. 2013. 矿井水害类型划分及主要特征分析[J]. 煤炭学报, 38 (4): 561-565. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201304006.htm
    谢生荣, 岳帅帅, 陈冬冬, 等. 2018. 深部充填开采留巷围岩偏应力演化规律与控制[J]. 煤炭学报, 43 (7): 1837-1846. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201807006.htm
    谢宪德. 1992. 浅谈南桐煤矿采区顶板离层裂隙透水[J]. 矿山测量, (2): 15-19. https://www.cnki.com.cn/Article/CJFDTOTAL-KSCL199202003.htm
    谢宪德. 1997. 南桐煤矿深部采区离层裂隙突水的原因及其防治[J]. 煤矿安全, (1): 31-35. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ199701010.htm
    许家林, 钱鸣高, 金宏伟. 2004. 岩层移动离层演化规律及其应用研究[J]. 岩土工程学报, 26 (5): 632-636. doi: 10.3321/j.issn:1000-4548.2004.05.012
    闫奋前. 2020. 特厚煤层开采覆岩离层动态演化特征及离层水害防治研究[D]. 青岛: 山东科技大学.
    杨庆, 乔伟, 乐建, 等. 2014. 巨厚煤层综采工作面顶板离层水形成条件分析及危险性评价[J]. 矿业安全与环保, 41 (3): 64-66, 70. doi: 10.3969/j.issn.1008-4495.2014.03.018
    余伟健, 冯涛, 王卫军, 等. 2012. 充填开采的协作支撑系统及其力学特征[J]. 岩石力学与工程学报, 31 (S1): 2803-2813. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2012S1026.htm
    张培森, 安羽枫, 王文苗, 等. 2017. 一种采充独立复合液压支架: 中国, CN206830216U[P]. 2018-01-02.
    张培森, 安羽枫, 王文苗, 等. 2017. 一种无损采矿方法: 中国, CN107120117A[P]. 2017-09-01.
    张培森, 安羽枫, 魏杰, 等. 2019a. 一种适用于无损采矿的快速充填方法: 中国, CN107091112B[P]. 2019-02-12.
    张培森, 段中稳, 汪玉泉, 等. 2019b. 皖北煤电矿区离层水害治理技术研究[R]. 青岛: 山东科技大学.
    张培森, 闫奋前, 孙亚楠, 等. 2020a. 特厚煤层开采覆岩离层水形成及涌突风险[J]. 煤矿安全, 51 (7): 36-41. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ202007008.htm
    张培森, 张睿, 段中稳, 等. 2020b. 一种针对工作面顶板离层水害的地面抽水孔抽排方法: 中国, CN111894671A[P]. 2020-11-06.
    张培森, 张睿, 段中稳, 等. 2020c. 一种采用地面泄水钻孔超前治理采场顶板离层水害的方法: 中国, CN111894672A[P]. 2020-11-06.
    张文泉, 王在勇, 吴欣焘, 2021. 顶板离层水突涌模式及预防技术模拟研究[J]. 煤田地质与勘探, 49 (1): 217-224, 231. doi: 10.3969/j.issn.1001-1986.2021.01.023
    赵德深, 苏仲杰, 隋惠全, 等. 1997. 覆岩离层充填减缓地表沉降实验模拟研究[J]. 煤炭学报, (6): 13-17. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB706.002.htm
    赵德深, 朱广轶, 刘文生, 等. 2002. 覆岩离层分布时空规律的实验研究[J]. 辽宁工程技术大学学报(自然科学版), (1): 4-7. doi: 10.3969/j.issn.1008-0562.2002.01.002
    周玉华. 2017. 采区顶板离层水害隐患判别[C]//中国煤炭学会、中国地质学会煤炭地质专业委员会、中国煤炭工业安全科学技术学会水害防治专业委员会、煤炭工业技术委员会煤矿防治水专家委员会、陕西省煤炭学会煤炭地质及环境保护专业委员会. 2017煤炭安全高效绿色开采地质保障技术研讨会论文集.
    朱卫兵, 王晓振, 孔翔, 等. 2009. 覆岩离层区积水引发的采场突水机制研究[J]. 岩石力学与工程学报, 28 (2): 306-311. doi: 10.3321/j.issn:1000-6915.2009.02.012
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  90
  • HTML全文浏览量:  64
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-13
  • 修回日期:  2021-07-15
  • 刊出日期:  2021-08-25

目录

    /

    返回文章
    返回