基于微震的底板采动裂隙扩展及导水通道识别技术研究

靳德武 段建华 李连崇 燕斌 牟文强 鲁晶津 周麟晟

靳德武, 段建华, 李连崇, 等. 2021. 基于微震的底板采动裂隙扩展及导水通道识别技术研究[J]. 工程地质学报, 29(4): 962-971. doi: 10.13544/j.cnki.jeg.2021-0330
引用本文: 靳德武, 段建华, 李连崇, 等. 2021. 基于微震的底板采动裂隙扩展及导水通道识别技术研究[J]. 工程地质学报, 29(4): 962-971. doi: 10.13544/j.cnki.jeg.2021-0330
Jin Dewu, Duan Jianhua, Li Lianchong, et al. 2021. Microseismicity based research for mining induced fracture propagation and water pathway identification technology of floor[J]. Journal of Engineering Geology, 29(4): 962-971. doi: 10.13544/j.cnki.jeg.2021-0330
Citation: Jin Dewu, Duan Jianhua, Li Lianchong, et al. 2021. Microseismicity based research for mining induced fracture propagation and water pathway identification technology of floor[J]. Journal of Engineering Geology, 29(4): 962-971. doi: 10.13544/j.cnki.jeg.2021-0330

基于微震的底板采动裂隙扩展及导水通道识别技术研究

doi: 10.13544/j.cnki.jeg.2021-0330
基金项目: 

国家十三五重点研发计划课题 2017YFC0804103

中国煤炭科工集团有限公司科技创新基金项目 2017MS007

详细信息
    作者简介:

    靳德武(1966-), 男, 博士, 研究员, 博士生导师, 主要从事矿井水害防治与水环境保护相关研究工作. E-mail:jindewu@cctegxian.com

    通讯作者:

    段建华(1979-), 男, 博士, 副研究员, 主要从事煤矿监测监控技术与装备研究工作. E-mail:duanjianhua@cctegxian.com

  • 中图分类号: TD166

MICROSEISMICITY BASED RESEARCH FOR MINING INDUCED FRACTURE PROPAGATION AND WATER PATHWAY IDENTIFICATION TECHNOLOGY OF FLOOR

Funds: 

the Chinese 13th Five-Year Key Research and Development Program 2017YFC0804103

Science and Technology Innovation Fund of China Coal Science and Engineering Group Co., Ltd. 2017MS007

  • 摘要: 华北型煤田开采面临奥陶系石灰岩岩溶富水性强、水压高、地质构造复杂、隔水层薄等问题, 防治水工作面临巨大挑战, 导水通道识别是底板水害防治的关键问题。论文结合微震监测原理, 提出基于微震能量密度及岩层破裂连通度反演导水通道的识别方法, 以河北葛泉矿东井11916工作面底板突水监测工程为背景, 应用上述基于震源参数的底板导水通道识别技术, 通过连通路径反演得到11916工作面内陷落柱区域存在1~3条主导裂隙, 通过视电阻率监测数据验证了导水通道的存在。结果表明, 以微震能量密度及连通度表征底板岩层采动裂隙的导通性是可行性的;研究成果为推动微震监测技术在底板水害防治中的应用提供了一条新途径, 同时, 为提升底板突水监测预警水平奠定了重要基础。
  • 图  1  应力波获取与微震定位

    Figure  1.  Stress wave acquisition and microseismic location

    图  2  岩石破裂能量密度识别

    Figure  2.  Identification of energy density from rock fracturing

    图  3  基于连通度的微震事件相互贯通形成裂缝

    Figure  3.  Formed fracture with interconnected microseismic events based on the connectivity

    图  4  11916工作面底板水文地质综合柱状示意图

    Figure  4.  Comprehensive column diagram of floor hydrogeology of panel 11916

    图  5  微震传感器与电法电极布置

    Figure  5.  Layout of microseismic sensor and electrode arrangement

    图  6  底板微震事件空间分布

    Figure  6.  Spatial distribution of microseismic events in coal floor

    图  7  底板能量密度云图(回采工作面俯视图)

    a.浅部(-125~-100 m)能量密度云图;b.深部(-150~-125 m)能量密度云图

    Figure  7.  Cloud chart of floor energy density(top view of working face)

    图  8  底板连通度分布特征

    Figure  8.  Distribution characteristics of floor connectivity

    图  9  陷落柱区域导水通道分布

    Figure  9.  Distribution of water pathways in collapse column area

    图  10  9月4日底板视电阻率水平剖面

    Figure  10.  Horizontal section of apparent resistivity of floor on September 4

    图  11  35号电极9月8~14日底板视电阻率垂直剖面

    Figure  11.  Vertical profile of apparent resistivity of No.35 electrode from September 8 to 14

    图  12  9月10日底板下方20 m电阻率平面分布图

    Figure  12.  Plane distribution of resistivity 20 m below the floor on September 10

  • Duan J H, Yan W C, Nan H C, et al. 2020. Application of mine-hole joint microseismic technology in monitoring the damage depth of working face floor[J]. Coal Geology & Exploration, 48(1): 208-220.
    Hanks T C, Kanamori H. 1979. A moment magnitude scale[J]. Journal of Geophysical Research, 84(B5): 2348-2350. doi: 10.1029/JB084iB05p02348
    Hu W Y, Tian G, Li K K. 2008. The resistant mechanism and control factors of coal seam floor aquiclude to high pressure water intrusion[J]. Coal Geology & Exploration, 36(6): 38-41.
    Huang Z, Jing Z Q, Cao D T, et al. 2014. Study of impermeability of rock stratum based on water injection test[J]. Chinese Journal of Rock Mechanics and Engineering, 33(S2): 3573-3580. http://d.wanfangdata.com.cn/Periodical/yslxygcxb2014z2022
    Jin D W. 2017. New development of water disaster prevention and control technology in China coal mine and consideration on methodology[J]. Coal Science and Technology, 45(5): 141-147. http://en.cnki.com.cn/Article_en/CJFDTotal-MTKJ201705024.htm
    Li L C, Tang C A, Liang Z Z, et al. 2009. Numerical analysis of pathway formation of groundwater inrush from faults in coal seam floor[J]. Chinese Journal of Rock Mechanics and Engineering, 28(2): 290-297. http://www.cqvip.com/QK/96026X/200902/29505333.html
    Li L C, Tang C A, Zuo Y J, et al. 2009. Mechanism of hysteretic groundwater inrush from coal seam floor with karstic collapse columns[J]. Journal of China Coal Society, 34(9): 1212-1216. http://www.cqvip.com/Main/Detail.aspx?id=31527239
    Li X L, Zhang F Y, Ding P P, et al. 2020. Coupled thermos-hydro-mechanical-chemical model for overpressure evolution in accreting mine fills[J]. Journal of Engineering Geology, 28(5): 1132-1139.
    Liu C, Wu S C, Cheng A P, et al. 2014. Microseismic monitoring and numerical simulation of the formation of water inrush pathway caused by coal mining[J]. Journal of University of Science and Technology Beijing, 36(9): 1129-1135. http://en.cnki.com.cn/Article_en/CJFDTOTAL-BJKD201409001.htm
    Liu S D, Liu J, Qi J, et al. 2019. Applied technologies and new advances of parallel electrical method in mining geophysics[J]. Journal of China Coal Society, 44(8): 2336-2345. http://www.zhangqiaokeyan.com/academic-journal-cn_journal-china-coal-society_thesis/0201273288016.html
    Li X L, Zhang F Y, Ding P P, et al. 2020. Coupled thermohydro-mechanical-chemical model for overpressure evolution in accreting mine fills[J]. Journal of Engineering Geology, 28(5): 1132-1139. http://www.sciencedirect.com/science/article/pii/S0013795219303850
    Mukuhira Y, Asanuma H, Ito T, et al. 2016. Physics-based seismic evaluation method: Evaluating possible seismic moment based on microseismic information due to fluid stimulation[J]. Geophysics, 81(6): KS195-KS205. doi: 10.1190/geo2015-0648.1
    Peng S P, Wang J A. 2001. Safe coal mining on confined water[M]. Beijing: China Coal Industry Publishing House.
    Shi L Q, Bu C S, Wei J C, et al. 2015. Theory and technology of Ordovician limestone karst water control in North China Coalfield[M]. Beijing: China Coal Industry Publishing House.
    Sui W H, Wang D D, Sun Y J, et al. 2019. Mine hydrogeological structure and its responses to mining[J]. Journal of Engineering Geology, 27(1): 21-28. http://en.cnki.com.cn/Article_en/CJFDTotal-GCDZ201901003.htm
    Sun Q H, Ma F S, Zhao H J, et al. 2019. Deformation and failure of surrounding rock considering weakening of mechanical parameters under seepage-damage-stress coupling[J]. Journal of Engineering Geology, 27(5): 955-965. http://en.cnki.com.cn/Article_en/CJFDTOTAL-GCDZ201905003.htm
    Wang Y, Yu S, Wang S J, et al. 2018. Application of microseismic monitoring technology in water inrush warning of coal mine floor[J]. Coal Science and Technology, 46(8): 68-73. http://en.cnki.com.cn/Article_en/CJFDTotal-MTKJ201808011.htm
    Xie H P, Ju Y, Li L Y. 2005. Criteria for strength and structural failure of rocks based on energy dissipation and energy release principles[J]. Chinese Journal of Rock Mechanics and Engineering, 24(17): 3001-3010. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb200517001
    Xiu J G, Xu P, Yang X, et al. 1998. Introduction to mine seismology[M]. Beijing: Seismological Press.
    Xu Z M, Sun Y J, Gong S Y, et al. 2012. Monitoring and numerical simulation of formation of water inrush pathway caused by coal mining above confined water with high pressure[J]. Chinese Journal of Rock Mechanics and Engineering, 31(8): 1698-1704. http://www.researchgate.net/publication/287765654_Monitoring_and_numerical_simulation_of_formation_of_water_inrush_pathway_caused_by_coal_mining_above_confined_water_with_high_pressure
    Yuan F Z, Ma K, Zhuang D Y, et al. 2019. Preparation mechanism of water inrush channels in bottom floor of Dongjiahe Coal Mine based on microseismic monitoring[J]. Journal of China Coal Society, 44(6): 1846-1856.
    Zhang B, Chang X F. 2018. Prediction method and application of coal mining floor failure depth[J]. Coal Technology, 37(12): 20-23. http://en.cnki.com.cn/Article_en/CJFDTotal-MTJS201812009.htm
    Zhang P S, Sun B Y. 2017. Development status of the detection technology for coal-seam stope floor damage[J]. Advances in Earth Science, 32(6): 577-588. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXJZ201706003.htm
    Zhao Q B, Jiang Q M, Gao C F. 2016. Study on floor water inrush mechanism of deep seam in Hanxing Mining Area[J]. Coal Science and Technology, 44(3): 117-121, 176. http://www.cqvip.com/QK/93932X/201603/668256875.html
    Zhou Z F, Wang Z, Li Y B, et al. 2021. Calculating the permeability parameters of the staggered zone based on the nonlinear flow simulation of the high-pressure packer test[J]. Journal of Engineering Geology, 29(1): 197-204.
    段建华, 闫文超, 南汉晨, 等. 2020. 井-孔联合微震技术在工作面底板破坏深度监测中的应用[J]. 煤田地质与勘探, 48(1): 208-220. doi: 10.3969/j.issn.1001-1986.2020.01.028
    虎维岳, 田干, 李抗抗. 2008. 煤层底板隔水层阻抗高压水侵入机理及其控制因素[J]. 煤田地质与勘探, 36(6): 38-41. doi: 10.3969/j.issn.1001-1986.2008.06.009
    黄震, 姜振泉, 曹丁涛, 等. 2014. 基于钻孔压水试验的岩层阻渗能力研究[J]. 岩石力学与工程学报, 33(S2): 3573-3580. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2014S2023.htm
    靳德武. 2017. 我国煤矿水害防治技术新进展及其方法论思考[J]. 煤炭科学技术, 45(5): 141-147. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201705024.htm
    李连崇, 唐春安, 梁正召, 等. 2009a. 含断层煤层底板突水通道形成过程的仿真分析[J]. 岩石力学与工程学报, 28(2): 290-297. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200902012.htm
    李连崇, 唐春安, 左宇军, 等. 2009b. 煤层底板下隐伏陷落柱的滞后突水机理[J]. 煤炭学报, 34(9): 1212-1216. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB200909014.htm
    李西龙, 张发源, 丁培培, 等. 2020. 尾矿连续沉积过程中超孔隙水压力演化的温度-渗流-力学-化学耦合模型[J]. 工程地质学报, 28(5): 1132-1139. doi: 10.13544/j.cnki.jeg.2020-255
    刘超, 吴顺川, 程爱平, 等. 2014. 采动条件下底板潜在导水通道形成的微震监测与数值模拟[J]. 北京科技大学学报, 36(9): 1129-1135. https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201409001.htm
    刘盛东, 刘静, 戚俊, 等. 2019. 矿井并行电法技术体系与新进展[J]. 煤炭学报, 44(8): 2336-2345. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201908008.htm
    彭苏萍, 王金安. 2001. 承压水体上安全采煤[M]. 北京: 煤炭工业出版社.
    施龙青, 卜昌森, 魏久传, 等. 2015. 华北型煤田奥灰岩溶水防治理论与技术[M]. 北京: 煤炭工业出版社.
    隋旺华, 王丹丹, 孙亚军, 等. 2019. 矿山水文地质结构及其采动响应[J]. 工程地质学报, 27(1): 21-28. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201901003.htm
    孙琪皓, 马凤山, 赵海军, 等. 2019. 基于渗流-损伤-应力耦合作用下考虑力学参数弱化的巷道围岩变形破坏分析[J]. 工程地质学报, 27(5): 955-965. doi: 10.13544/j.cnki.jeg.2019171
    王悦, 于水, 王苏健, 等. 2018. 微震监测技术在煤矿底板突水预警中的应用[J]. 煤炭科学技术, 46(8): 68-73. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201808011.htm
    修济刚, 徐平, 杨心平, 等. 1998. 矿山地震学引论[M]. 北京: 地震出版社.
    谢和平, 鞠杨, 黎立云. 2005. 基于能量耗散与释放原理的岩石强度与整体破坏准则[J]. 岩石力学与工程学报, 24(17): 3001-3010. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200517000.htm
    徐智敏, 孙亚军, 巩思园, 等. 2012. 高承压水上采煤底板突水通道形成的监测与数值模拟[J]. 岩石力学与工程学报, 31(8): 1698-1704. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201208024.htm
    原富珍, 马克, 庄端阳, 等. 2019. 基于微震监测的董家河煤矿底板突水通道孕育机制[J]. 煤炭学报, 44(6): 1846-1856. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201906024.htm
    张波, 常晓峰. 2018. 煤层底板采动破坏深度预测方法与应用[J]. 煤炭技术, 37(12): 20-23. https://www.cnki.com.cn/Article/CJFDTOTAL-MTJS201812009.htm
    张平松, 孙斌杨. 2017. 煤层回采工作面底板破坏探查技术的发展现状[J]. 地球科学进展, 32(6): 577-588. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201706003.htm
    赵庆彪, 蒋勤明, 高春芳. 2016. 邯邢矿区深部煤层底板突水机理研究[J]. 煤炭科学技术, 44(3): 117-121, 176. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201603023.htm
    周志芳, 王哲, 李雅冰, 等. 2021. 基于钻孔高压压水试验非线性流模拟计算错动带渗透参数[J]. 工程地质学报, 29(1): 197-204. doi: 10.13544/j.cnki.jeg.2020-626
  • 加载中
图(12)
计量
  • 文章访问数:  70
  • HTML全文浏览量:  83
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-13
  • 修回日期:  2021-07-26
  • 网络出版日期:  2021-09-03
  • 刊出日期:  2021-09-03

目录

    /

    返回文章
    返回