基于PIV技术的贯通单裂隙岩体压-剪破坏特征试验

王文学 苏凌煜 薛景元 郝清扬 姜彤

王文学, 苏凌煜, 薛景元, 等. 2021. 基于PIV技术的贯通单裂隙岩体压-剪破坏特征试验[J]. 工程地质学报, 29(4): 1121-1130. doi: 10.13544/j.cnki.jeg.2021-0334
引用本文: 王文学, 苏凌煜, 薛景元, 等. 2021. 基于PIV技术的贯通单裂隙岩体压-剪破坏特征试验[J]. 工程地质学报, 29(4): 1121-1130. doi: 10.13544/j.cnki.jeg.2021-0334
Wang Wenxue, Su Lingyu, Xue Jingyuan, et al. 2021. PIV technology based experiment for compression-shear failure characteristics of connected fissure rock mass[J]. Journal of Engineering Geology, 29(4): 1121-1130. doi: 10.13544/j.cnki.jeg.2021-0334
Citation: Wang Wenxue, Su Lingyu, Xue Jingyuan, et al. 2021. PIV technology based experiment for compression-shear failure characteristics of connected fissure rock mass[J]. Journal of Engineering Geology, 29(4): 1121-1130. doi: 10.13544/j.cnki.jeg.2021-0334

基于PIV技术的贯通单裂隙岩体压-剪破坏特征试验

doi: 10.13544/j.cnki.jeg.2021-0334
基金项目: 

国家自然科学基金 42090052

国家自然科学基金 41602298

河南省青年托举人才项目 2020HYTP014

详细信息
    作者简介:

    王文学(1985-),男,博士,副教授,硕士生导师,主要从事水文地质工程地质方面的教学科研. E-mail:wangwenxue@ncwu.edu.cn

    通讯作者:

    姜彤(1973-),男,博士,教授,博士生导师,主要从事岩土工程方面的研究. E-mail: jiangtong@ncwu.edu.cn

  • 中图分类号: P642.3

PIV TECHNOLOGY BASED EXPERIMENT FOR COMPRESSION-SHEAR FAILURE CHARACTERISTICS OF CONNECTED FISSURE ROCK MASS

Funds: 

the National Natural Science Foundation of China 42090052

the National Natural Science Foundation of China 41602298

Youth Talent Support Project of Henan Province of China 2020HYTP014

  • 摘要: 基于PIV技术,采用相似材料预制贯通单裂隙岩体试件并开展压-剪试验,探究了裂隙开度对贯通单裂隙试件的强度、变形及破坏过程的影响。结果表明:(1)试件发生初始断裂时不同裂隙开度试验组应力均明显下降,且随着开度的增大裂隙岩体胶结部位塑性变形增强,岩体试件的特征应力值减小;(2)裂隙开度影响到裂隙和胶结部位变形在试件总变形中所占比例,进而影响裂隙试件的轴向峰值应变和横向峰值应变,开度越大裂隙试件的轴向峰值应变与横向峰值应变越小;(3)随着开度增大试件初始断裂部位由中下部向中上部转移,同时试件逐渐由拉伸剪切复合破坏转变为单一的剪切破坏;(4)需达到位移阈值k试件表面才能产生裂隙,而预制裂隙开度增大会降低试件的位移阈值k。其结果为研究深部矿井裂隙沟通造成的突水溃砂机理奠定了一定的基础。
  • 图  1  开采断裂岩体贯通裂隙示意图

    Figure  1.  Indication diagram of penetrating cracks in fractured rock mass

    图  2  贯通单裂隙岩体试件示意图

    a. 侧视图;b. 俯视图

    Figure  2.  Schematic diagram of single-through fractured rock mass specimen

    图  3  试验模型图

    Figure  3.  Test model diagram

    图  4  完整圆柱试件的单轴抗压强度曲线

    Figure  4.  Uniaxial compressive strength curve of cylindrical specimens

    图  5  贯通单裂隙试件示意图(左为侧视图,右为俯视图)

    Figure  5.  Schematic diagram of single-through fractured specimen(left side view,right top view)

    图  6  不同开度预制裂隙试件的应力-应变曲线

    Figure  6.  Stress-strain curves of pre-crack specimens with different openings

    图  7  初始裂隙萌生、发育、扩展过程应力-应变曲线

    Figure  7.  Stress-strain curve of initial fracture initiation,development and expansion process

    图  8  裂隙试件的裂隙起始应力及破坏应力统计

    Figure  8.  Statistics of crack initiation stress and failure stress of fractured specimens

    图  9  岩石单元应力状态

    Figure  9.  Stress state of rock element

    图  10  裂隙试件的轴向峰值应变和横向峰值应变统计

    Figure  10.  Statistics of axial peak strain and transverse peak strain of fractured specimens

    图  11  裂隙试件横向应变统计

    Figure  11.  Transverse strain statistics of fractured specimens

    图  12  开度0.5mm预制裂隙试件矢量位移场演变过程

    a. 裂隙萌生;b. 裂隙发育扩展;c. 裂隙贯通

    Figure  12.  Evolution process of vector displacement field of 0.5mm prefabricated fracture specimen with 12 openings

    图  13  不同开度预制裂隙试件初始裂隙断裂阶段对比图

    a. 开度0.5mm;b. 开度1mm;c. 开度1.5mm;d. 开度2mm

    Figure  13.  Evolution process of vector displacement field of 2mm prefabricated crack specimen with opening

    图  14  两细观颗粒间位移模式与黏结破坏(岑夺丰等,2014)

    a. T型位移;b. S型位移;c. X型位移

    Figure  14.  Displacement mode and bond failure between two microscopic particles

    图  15  不同开度裂隙试件完全破坏图

    a. 开度0.5mm;b. 开度2mm

    Figure  15.  Complete failure diagram of fractured specimens with different openings

    表  1  相似材料基本物理力学参数

    Table  1.   Basic physical and mechanical parameters of similar materials

    ρ/g·cm-3 ω/% υ σ/MPa E/MPa φ/(°) c/MPa
    1.81 25.5 0.28 2.80 2.5 18.2 0.93
    下载: 导出CSV

    表  2  不同开度预制裂隙试件的特征应力值统计

    Table  2.   Statistics of characteristic stress values of prefabricated crack specimens with different openings

    开度/mm σf/MPa σci/MPa σci/σf σcd/MPa σcd/σf
    0.5 1.74 0.29 0.167 1.37 0.79
    1 1.51 0.27 0.178 1.32 0.88
    1.5 1.42 0.25 0.176 1.21 0.85
    2 1.24 0.24 0.194 1.2 0.97
    下载: 导出CSV
  • Cen D F,Huang D. 2014. Mesoscopic displacement modes of crack propagation of rock mass under uniaxial compression with high strain rate[J]. Journal of China Coal Society,39 (3): 436-444. http://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201403008.htm
    Chen P Y. 2018. Research progress on PFC2D simulation of crack propagation characteristics of cracked rock[J]. Journal of Engineering Geology, 26 (2): 528-539. http://en.cnki.com.cn/Article_en/CJFDTOTAL-GCDZ201802031.htm
    Chen X, Liao Z H, Li D J. 2011. Experimental study of effects of joint inclination angle and connectivity rate on strength and deformation properties of rock masses under uniaxial compression[J]. Chinese Journal of Rock Mechanics and Engineering, 30 (4): 781-789. http://www.cnki.com.cn/Article/CJFDTotal-YSLX201104018.htm
    Chen Y S, Liu S F, Li N et al. 2007. Crack's influence on mechanical properties of the intermittent crack media[J]. Journal of Northwest A and F University(Nat. Sci. Ed. ), 35 (7): 207-212. http://en.cnki.com.cn/Article_en/CJFDTOTAL-XBNY200707039.htm
    Gent H V, Abe S, Urai J, et al. 2010. The formation of open fractures in cohesive materials, results of scaled analogue and numerical modelling on fault zone porosity development[J]. EPJ Web of Conferences, 6: 22016. doi: 10.1051/epjconf/20100622016
    Huang Y H, Yang S Q, Liu X R. 2014. Experimental and numerical study on the mechanical characteristics of rock-like materials[J]. Journal of Experimental Mechanics, 29 (2): 239-249.
    Li H M, Fu K. 2006. Some major technical problems and countermeasures for deep mining[J]. Journal of Mining and Safety Engineering, 23 (4): 468-471. http://www.cqvip.com/Main/Detail.aspx?id=23482555
    Liu W T, Shen J J. 2016. Experimental study of propagation mode of crack in real rock specimens with a single crack[J]. Chinese Journal of Rock Mechanics and Engineering, 35 (68): 1182-1189. http://www.researchgate.net/publication/305173265_Experimental_study_of_propagation_mode_of_crack_in_real_rock_specimens_with_a_single_crack
    Ma S P, Wang L G, Zhao Y H. 2006. Experimental study on deformation field evolution during failure procedure of a rock borehole structure[J]. Rock and Soil Mechanics, 27 (7): 1082-1086. http://www.cnki.com.cn/Article/CJFDTotal-YTLX200607011.htm
    Ma Y S, Chen W Z, Yang D S, et al. 2017. Experimental study of brittle rock failure based on three-dimensional digital image correlation technique[J]. Rock and Soil Mechanics, 38 (1): 117-123. http://www.researchgate.net/publication/316642115_Experimental_study_of_brittle_rock_failure_based_on_three-dimensional_digital_image_correlation_technique
    Niu J R, Huang K, Yao C, et al. 2016. Numerical Simulation of failure mechanism of fractured rock with different apertures under uniaxial compression[J]. Yangtze River, 47 (22): 87-91. http://en.cnki.com.cn/Article_en/CJFDTOTAL-RIVE201622019.htm
    Pu C Z, Cao P, Chen Y, et al. 2011. Fracture test and failure mechanism of rock-like material of relatively different fracture apertures[J]. Journal of Central South University(Science and Technology), 42 (8): 2394-2399. http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZNGD201108037.htm
    Pu C Z, Yang S J, Zhang C Y. 2019. Fracture mechanism of pre-cracked specimens influenced by opening width[J]. Chinese Journal of Geotechnical Engineering, 41 (10): 1836-1844.
    Sui W H, Wang D D, Sun Y J, et al. 2019. Mine hydrogeological structure and its responses to mining[J]. Journal of Engineering Geology, 27 (1): 21-28. http://en.cnki.com.cn/Article_en/CJFDTotal-GCDZ201901003.htm
    Tang H M, Zhang J H, Chen H K. 2016. Laboratory tests on failure mechanism of fractured rock under compression[J]. Journal of Engineering Geology, 24 (3): 363-368. http://en.cnki.com.cn/Article_en/CJFDTOTAL-GCDZ201603004.htm
    Tapponier P, Brace W F. 1976. Development of stress induced micro-cracks in Westerly granite[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 13 (4): 103-112. doi: 10.1016/0148-9062(76)91937-9
    Wang W X, Sui W H, Dong Q H, et al. 2013. Closure effect of mining-induced fractures under sand aquifers and prediction of overburden failure due to re-mining[J]. Journal of China Coal Society, 38 (10): 1728-1734. http://qikan.cqvip.com/Qikan/Article/Detail?id=47718035
    Wang W X, Sui W H, Dong Q H. 2014. Influence of cover stress re-establishment on the permeability evolution of the mining-induced fractures[J]. Journal of China Coal Society, 39 (6): 1031-1038. http://search.ebscohost.com/login.aspx?direct=true&db=aph&AN=98343330&site=ehost-live
    White D J, Take W A, Bolton M D. 2003. Soil deformation measurement using particle image velocimetry(PIV) and photogrammetry[J]. Géotechnique, 53 (7): 619-63. doi: 10.1680/geot.2003.53.7.619
    Xian C. 2014. Study on the model test of different opening width crack propagation[D]. Chongqing: Chongqing University.
    Xiao T L, Li X P, Jia S P. 2012. Triaxial test research and mechanical analysis based on structure surface effect of deep rock mass with single fissure[J]. Chinese Journal of Rock Mechanics and Engineering, 31 (8): 1666-1673. http://www.researchgate.net/publication/289292517_triaxial_test_research_and_mechanical_analysis_based_on_structure_surface_effect_of_deep_rock_mass_with_single_fissure
    Xie H P, Gao F, Ju Y. 2015. Research and development of rock mechanics in deep ground engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 34 (11): 2161-2178. http://www.researchgate.net/publication/286855596_Research_and_development_of_rock_mechanics_in_deep_ground_engineering
    Yang S Q. 2013. Study of strength failure and crack coalescence behavior of sandstone containing three pre-existing fissures[J]. Rock and Soil Mechanics, 34 (1): 31-39. http://d.wanfangdata.com.cn/periodical/ytlx201301007
    Zeng J J, Zhang Z J, Zhang X X, et al. 2020. Fracture test and analysis of horizontal fissure rock-like specimens influenced by apertures[J]. Chinese Journal of Geotechnical Engineering, 42 (3): 523-532.
    Zhao J J, Xie M L, Yu J L, et al. 2019. Experimental study on mechanical properties and damage evolution of fractured rock under freezing-thawing action[J]. Journal of Engineering Geology, 27 (6): 1199-1207. http://en.cnki.com.cn/Article_en/CJFDTotal-GCDZ201906001.htm
    岑夺丰, 黄达. 2014. 高应变率单轴压缩下岩体裂隙扩展的细观位移模式[J]. 煤炭学报, 39 (3): 436-444. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201403008.htm
    陈鹏宇. 2018. PFC2D模拟裂隙岩石裂纹扩展特征的研究现状[J]. 工程地质学报, 26 (2): 528-539. doi: 10.13544/j.cnki.jeg.2017-039
    陈新, 廖志红, 李德建. 2011. 节理倾角及连通率对岩体强度、变形影响的单轴压缩试验研究[J]. 岩石力学与工程学报, 30 (4): 781-789. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201104018.htm
    陈蕴生, 刘晟锋, 李宁, 等. 2007. 裂隙对非贯通裂隙介质强度与变形特性影响的研究[J]. 西北农林科技大学学报(自然科学版), 35 (7): 207-212. doi: 10.3321/j.issn:1671-9387.2007.07.040
    黄彦华, 杨圣奇, 刘相如. 2014. 类岩石材料力学特性的试验及数值模拟研究[J]. 实验力学, 29 (02): 239-249. https://www.cnki.com.cn/Article/CJFDTOTAL-SYLX201402015.htm
    李化敏, 付凯. 2006. 煤矿深部开采面临的主要技术问题及对策[J]. 采矿与安全工程学报, 23 (4): 468-471. doi: 10.3969/j.issn.1673-3363.2006.04.021
    刘伟韬, 申建军. 2016. 含单裂纹真实岩石试件断裂模式的力学试验研究[J]. 岩石力学与工程学报, 35 (6): 1182-1189. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201606011.htm
    马少鹏, 王来贵, 赵永红. 2006. 岩石圆孔结构破坏过程变形场演化的实验研究[J]. 岩土力学, 27 (7): 1082-1086. doi: 10.3969/j.issn.1000-7598.2006.07.012
    马永尚, 陈卫忠, 杨典森, 等. 2017. 基于三维数字图像相关技术的脆性岩石破坏试验研究[J]. 岩土力学, 38 (1): 117-123. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201701016.htm
    牛江瑞, 黄昆, 姚池, 等. 2016. 单轴压缩下不同裂隙张开度岩石破坏数值模拟[J]. 人民长江, 47 (22): 87-91. https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE201622019.htm
    蒲成志, 曹平, 陈瑜, 等. 2011. 不同裂隙相对张开度下类岩石材料断裂试验与破坏机理[J]. 中南大学学报(自然科学版), 42 (8): 2394-2399. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201108037.htm
    蒲成志, 杨仕教, 张春阳. 2019. 张开度影响的裂隙体破断机制探讨[J]. 岩土工程学报, 41 (10): 1836-1844. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201910009.htm
    隋旺华, 王丹丹, 孙亚军, 等. 2019. 矿山水文地质结构及其采动响应[J]. 工程地质学报, 27 (1): 21-28. doi: 10.13544/j.cnki.jeg.2019-072
    唐红梅, 张金浩, 陈洪凯. 2016. 含裂隙岩石的受压破坏机理研究[J]. 工程地质学报, 24 (3): 363-368. doi: 10.13544/j.cnki.jeg.2016.03.004
    王文学, 隋旺华, 董青红, 等. 2013. 松散层下覆岩裂隙采后闭合效应及重复开采覆岩破坏预测[J]. 煤炭学报, 38 (10): 1728-1734. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201310003.htm
    王文学, 隋旺华, 董青红. 2014. 应力恢复对采动裂隙岩体渗透性演化的影响[J]. 煤炭学报, 39 (6): 1031-1038. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201406008.htm
    先超. 2014. 不同张开度裂纹扩展的模型试验研究[D]. 重庆: 重庆大学.
    肖桃李, 李新平, 贾善坡. 2012. 深部单裂隙岩体结构面效应的三轴试验研究与力学分析[J]. 岩石力学与工程学报, 31 (8): 1666-1673. doi: 10.3969/j.issn.1000-6915.2012.08.021
    谢和平, 高峰, 鞠杨. 2015. 深部岩体力学研究与探索[J]. 岩石力学与工程学报, 34 (11): 2161-2178. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201511001.htm
    杨圣奇. 2013. 断续三裂隙砂岩强度破坏和裂纹扩展特征研究[J]. 岩土力学, 34 (1): 31-39. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201301004.htm
    曾佳君, 张志军, 张栩栩, 等. 2020. 张开度影响的水平裂隙类岩试件破断试验与分析[J]. 岩土工程学报, 42 (3): 523-532. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202003019.htm
    赵建军, 解明礼, 余建乐, 等. 2019. 冻融作用下含裂隙岩石力学特性及损伤演化规律试验研究[J]. 工程地质学报, 27 (6): 1199-1207. doi: 10.13544/j.cnki.jeg.2019-115
  • 加载中
图(15) / 表(2)
计量
  • 文章访问数:  194
  • HTML全文浏览量:  67
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-15
  • 修回日期:  2021-07-16
  • 网络出版日期:  2021-09-03
  • 刊出日期:  2021-09-03

目录

    /

    返回文章
    返回