淮北青东煤矿深层地热水的水文地球化学特征与水源识别

许继影 桂和荣 葛春贵 倪建明 郭艳 庞迎春 胡杰 聂锋

许继影, 桂和荣, 葛春贵, 等. 2021. 淮北青东煤矿深层地热水的水文地球化学特征与水源识别[J]. 工程地质学报, 29(4): 1037-1047. doi: 10.13544/j.cnki.jeg.2021-0336
引用本文: 许继影, 桂和荣, 葛春贵, 等. 2021. 淮北青东煤矿深层地热水的水文地球化学特征与水源识别[J]. 工程地质学报, 29(4): 1037-1047. doi: 10.13544/j.cnki.jeg.2021-0336
Xu Jiying, Gui Herong, Ge Chungui, et al. 2021. Hydrogeochemical characteristics and source identification of deep geothermal water in Qingdong coal mine, Huaibei, Anhui province[J]. Journal of Engineering Geology, 29(4): 1037-1047. doi: 10.13544/j.cnki.jeg.2021-0336
Citation: Xu Jiying, Gui Herong, Ge Chungui, et al. 2021. Hydrogeochemical characteristics and source identification of deep geothermal water in Qingdong coal mine, Huaibei, Anhui province[J]. Journal of Engineering Geology, 29(4): 1037-1047. doi: 10.13544/j.cnki.jeg.2021-0336

淮北青东煤矿深层地热水的水文地球化学特征与水源识别

doi: 10.13544/j.cnki.jeg.2021-0336
基金项目: 

国家自然科学基金 41773100

淮北矿业集团公司科研项目 2021

宿州学院校级重点科研项目 2020yzd03

宿州学院校级重点科研项目 2020yzd07

安徽省学术和技术带头人科研活动经费资助项目 2020D239

详细信息
    作者简介:

    许继影(1986-)女,硕士,讲师,主要从事水文地质、矿井地质的研究与教学工作.E-mail: jiyingxu1986@163.com

    通讯作者:

    桂和荣(1963-),男,博士,教授,博士生导师,从事水文地球化学方面的研究与教学工作.E-mail: guiherong@163.com

  • 中图分类号: P641.3

HYDROGEOCHEMICAL CHARACTERISTICS AND SOURCE IDENTIFICATION OF DEEP GEOTHERMAL WATER IN QINGDONG COAL MINE, HUAIBEI, ANHUI PROVINCE

Funds: 

the National Natural Science Foundation of China 41773100

the Scientific Research Project of Huaibei Mining Group Company 2021

the Key Natural Science Research Projects of Suzhou University 2020yzd03

the Key Natural Science Research Projects of Suzhou University 2020yzd07

the Funding Projects for Research Activities of Academic and Technological Leaders of Anhui Province 2020D239

  • 摘要: 深层地热水是矿井地质灾害的警示因素,探究其水文地球化学特征及来源,对矿井水害和热害防治具有现实意义。本文以淮北煤田青东煤矿深层地热水为研究对象,采集同水平(-585 m)的13个地热水样和11个非地热水样,对比分析两类水体离子特征差异,探讨地热水水化学成分形成作用及控制因素,同时收集矿井各突水含水层水样共31个,基于Fisher突水识别模型对地热水水源展开识别,结合地下水循环及构造条件,分析地热水成因。结果表明,地热水的TDS、Ca2+、Cl-指标高于非地热水,水化学类型以SO4 ·Cl-Ca ·Mg为主,呈弱碱性;两类水水化学差异是不同地下水化学成分的综合反映,地热水的水化学成分主要受水岩作用和离子交替作用共同控制,其中水岩作用以硅酸盐溶解、含煤地层黄铁矿氧化、蒸发盐溶解最为显著,地热水的水岩作用和离子交替作用程度相比非地热水强;地热水由深部奥灰水补给,经断裂导水通道至太原组石灰岩含水层混合而成,且奥陶系石灰岩含水层水混合比例高。研究结果对矿井防治水工作提供了指导。
  • 图  1  青东煤矿区域位置、深部地热异常区及采样点位置图

    Figure  1.  Regional location, deep geothermal anomaly area and sampling point location map of the Qingdong coal mine

    图  2  含水层剖面示意图

    Figure  2.  Aquifer profile of the Qingdong coal mine

    图  3  地热水和常规水的Durov图

    Figure  3.  Durov diagram

    图  4  离子组合摩尔比值关系图

    Figure  4.  Molar ratio diagram of ion combination

    a. Cl--Na+; b. SO42--(Ca2++Mg2+); c. (HCO3-+SO42-)-(Ca2++Mg2+); d. Mg2+-Ca2+

    图  5  吉布斯图解

    Figure  5.  Gibbs diagram

    图  6  Ca/Na-Mg/Na和Ca/Na-HCO3/Na比值图

    Figure  6.  Ratio diagram of Ca/Na-Mg/Na and Ca/Na-HCO3/Na

    图  7  阳离子交替的离子组合比值图

    Figure  7.  Ion combination ratio diagram of ion exchange

    图  8  Fisher水源判别结果图

    a. 非地热水;b. 地热水

    Figure  8.  Diagram of water source discrimination based on Fisher

    图  9  地热水成因示意图

    Figure  9.  Schematic diagram of geothermal water genesis

    表  1  地热水和非地热水常规组分含量统计特征

    Table  1.   Statistical characteristics of conventional components in geothermal water and common groundwater

    指标 地热水 非地热水 a b
    范围 平均值 变异系数 范围 平均值 变异系数
    pH 6.94~8.09 7.55 5.50% 7.13~8.50 7.62 4.98% 6.5~8.5 6.5~8.5
    Na++K+ 81.19~566.04 331.80 39.80% 243.00~518.90 362.85 25.86% 200+12 200+-
    Ca2+ 195.6~710.6 466.6 35.36% 243.0~518.9 362.8 25.86% 70
    Mg2+ 53.20~211.74 133.13 34.95% 199.47~495.30 281.80 29.59% 50
    Cl- 204.20~335.03 249.69 13.45% 30.95~192.99 123.37 34.85% 250 250
    SO42- 1397~2089 1785 12.91% 1271~1594 1425 6.59% 250 250
    HCO3- 207.73~297.78 242.05 9.23% 188.31~291.42 266.42 11.45% 500 -
    TDS 2488~3681 3082 11.66% 23838~2805 2518 5.36% 500 1000
    总硬度 1235.98~2496.80 1737.44 10.26% 813.56~1397.17 1250.19 5.29% 500 450
    a. 世界卫生组织(2011)(World Health Organization,2011);b. 生活饮用水卫生标准(GB5749-2006)(中国国家标准化管理委员会,2006)
    下载: 导出CSV

    表  2  变量之间的相关系数

    Table  2.   Correlation coefficient of variables

    K++Na+ Ca2+ Mg2+ Cl- SO42- HCO3- TDS 总硬度 pH
    K++Na+ 1 -0.406 -0.463 0.291 0.273 -0.074 0.358 -0.449 0.379
    Ca2+ -0.406 1 0.637 0.549 0.722 -0.286 0.604 0.936 -0.611
    Mg2+ -0.463 0.637 1 0.454 0.522 -0.195 0.337 0.802 -0.531
    Cl- 0.291 0.549 0.454 1 0.832 -0.560 0.742 0.539 -0.067
    SO42- 0.273 0.722 0.522 0.832 1 -0.453 0.892 0.700 -0.363
    HCO3- -0.074 -0.286 -0.195 -0.560 -0.453 1 -0.343 -0.267 -0.192
    TDS 0.358 0.604 0.337 0.742 0.892 -0.343 1 0.548 -0.231
    总硬度 -0.449 0.936 0.802 0.539 0.700 -0.267 0.548 1 -0.611
    pH 0.379 -0.611 -0.531 -0.067 -0.363 -0.192 -0.231 -0.611 1
    下载: 导出CSV
  • Al-Bassam A M, Khalil A R. 2012. DurovPwin: A new version to plot the expanded Durov diagram for hydro-chemical data analysis[J]. Computers & Geosciences, 42 : 1-6. http://www.sciencedirect.com/science/article/pii/S0098300412000404
    Andres M, Paul S. 2018. Groundwater chemistry and the Gibbs Diagram[J]. Applied Geochemistry, 97 : 209-212. doi: 10.1016/j.apgeochem.2018.07.009
    Chen K, Sun L H. 2019. Analysis of chemical composition and control factors of groundwater in Renlou coal mine[J]. Coal Science and Technology, 47 (10): 240-244.
    Chen L W, Xu D Q, Yin X X, et al. 2017. Analysis on hydrochemistry and its control factors in the concealed coal mining area in North China: A case study of dominant inrush aquifers in Suxian mining area[J]. Journal of China Coal Society, 42 (4): 996-1004. http://en.cnki.com.cn/Article_en/CJFDTotal-MTXB201704024.htm
    Chen L W, Yin X X, Xie W P, et al. 2014. Calculating groundwater mixing ratios in groundwater-inrushing aquifers based on environmental stable isotopes(D, O) and hydrogeochemistry[J]. Natural Hazards, 71 (1): 937-953. doi: 10.1007/s11069-013-0941-2
    Chen S, Gui H R. 2017. Hydrogeochemical characteristics of groundwater in the coal-bearing aquifer of the Wugou coal mine, northern Anhui Province, China[J]. Applied Water Science, 7 (4): 1903-1910. doi: 10.1007/s13201-015-0365-0
    Chenaker H, Houha B, Vincent V. 2018. Hydrogeochemistry and geothermometry of thermal water from north-eastern Algeria[J]. Geothermics, 75 : 137-145. doi: 10.1016/j.geothermics.2018.04.009
    Darma S. 2016. Indonesia: vast geothermal potential, modest but growing exploitation. Geothermal power generation[J]. Amsterdam: Elsevier, 609-643. http://www.sciencedirect.com/science/article/pii/B9780081003374000218
    Gui H R, Chen S. 2016. Isotopic geochemistry characteristics of groundwater and its geological significance in Sunan mining area[J]. Earth Science Frontier, 23 (3): 133-139. http://en.cnki.com.cn/Article_en/CJFDTotal-DXQY201603021.htm
    Guo Y, Wei J C, Gui H R, et al. 2020. Evaluation of changes in groundwater quality caused by a water inrush event in Taoyuan coal mine, China[J]. Environmental Earth Sciences, 79 (24): 1-15. http://www.researchgate.net/publication/346092515_Evaluation_of_changes_in_groundwater_quality_caused_by_a_water_inrush_event_in_Taoyuan_coal_mine_China
    Hao C M, Zhang W, Gui H R. 2020. Hydrogeochemistry characteristic contrasts between low-and high-antimony in shallow drinkable groundwater at the largest antimony mine in hunan province, China[J]. Applied Geochemistry, 117: 104584. doi: 10.1016/j.apgeochem.2020.104584
    Li C X, Xin C P, Li H G, et al. 2020. Prediction of coal and gas outburst based on Fisher-stepwise discriminant analysis method[J]. China Mining Magazine, 29 (7): 106-111.
    Li C, Chen Z S, Wang G L, et al. 2020. Geochemical characteristics and origin of geothermai water in southeastern Guizhou, China[J]. Bulletin of Minemlogy Petmlogy and Geochemistry, 39 (3): 614-625.
    Li H Y, Zhu Y W, Yi J C. 2007. Analysis of ground temperature variation law and abnormal factors in Huainan Mining Area[J]. Safety in Coal Mines, 39 (11): 68-71.
    Li L G, Li B X. 2017. A discussion on the heat source mechanism and geothermal system of Gonghe-Guide Basin and mountain geothermal field in Qinghai Province[J]. Geophysical and Geochemical Exploration, 41 (1): 29-34. http://en.cnki.com.cn/Article_en/CJFDTotal-WTYH201701005.htm
    Li Q, Xin Q K B U Z, Hong Y S, et al. 2018. Water and water chemical characteristics and origin analysis of karst hot ore in central Zunyi[J]. Coal Technology, 37 (10): 136-139. http://search.cnki.net/down/default.aspx?filename=MTJS201810051&dbcode=CJFD&year=2018&dflag=pdfdown
    Liao X, Jiang H, Xu Z X, et al. 2020. Hydrogeochemical characteristics and genesis mechanism of geothermal water in Awang, Eastern Tibett[J]. Journal of Engineering Geology, 28 (4): 916-924.
    Liu M L, He T, Wu Q F, et al. 2020. Hydrogeochemistry of geothermal waters from Xiongan new area and its indicating significance[J]. Earth Science, 45 (6): 2221-2231.
    Luo L, Mao X, Wang X W, et al. 2020. Genesis analysis of sulfate geothermal mineral water in karst aquifers at Xiwenzhuang uplift, Taiyuan Basin[J]. Journal of Engineering Geology, 28 (4): 925-934.
    Lloyd J W, Heathcote J A. 1985. Natural inorganic hydrogeochemistry in relation to groundwater[M]. Oxford, England: Clarendon Press.
    Lu J T, Li X B, Gong F Q, et al. 2012. Recognizing of mine water inmsh sources based on principal components analysis and fisher discrimination analysis method[J]. China Safety Science Journal, 22 (7): 109-115.
    Ma J, Sun L H, Chen S, et al. 2020. Hydrochemical characteristics and water quality assessment of surface water and groundwater in Agriculture Demonstration Base, Jiagou District, Northern Anhui Province, China[J]. Nature Environment & Pollution Technology, 19 (4): 1713-1721. http://www.researchgate.net/publication/347588911_Hydrochemical_Characteristics_and_Water_Quality_Assessment_of_Surface_Water_and_Groundwater_in_Agriculture_Demonstration_Base_Jiagou_District_Northern_Anhui_Province_China
    Ministry of health of the people's Republic of China and China National Standardization Management Committee. 2006. National standard of the people's Republic of China: sanitary standard for drinking water(GB 5749-2006)[S]. Beijing: China Standards Press.
    Nasruddin N, Idrus Alhamid M, Daud Y, et al. 2016. Potential of geothermal energy for electricity generation in Indonesia: A review[J]. Renewable & Sustainable Energy Reviews, 53 : 733-740. http://www.researchgate.net/profile/Arief_Surachman2/publication/282407585_Potential_of_geothermal_energy_for_electricity_generation_in_Indonesia_A_review/links/564169b908ae24cd3e411a61.pdf
    Peng T, Wu J W, Ren Z Q, et al. 2015a. Distribution of terrestrial heat flow and structural control in Huainan-Huaibei coalfield[J]. Chinese of Journal of Geophysics, 58 (7): 2391-2401. doi: 10.1002/cjg2.20179/pdf
    Peng T, Wu J W, Ren Z Q, et al. 2015b. Distribution characteristics of current geothermal field and terrestrial heat flow in Huaibei coalfield[J]. Earth Science: Journal of China University of Geosciences, (6): 1083-1092.
    Tran T Q, Banning A, Wisotzky F, et al. 2020. Mine water hydrogeochemistry of abandoned coal mines in the outcropped Carboniferous formations, Ruhr Area, Germany[J]. Environmental Earth Sciences, 79 (4): 1-16. doi: 10.1007/s12665-020-8821-z
    Wang Z T, Liu Q M, Liu Y. 2019. Spatial distribution and formation of groundwater hydrochemistry in Huainan coalfield[J]. Coal Geology & Exploration, 47 (5): 40-47. http://en.cnki.com.cn/Article_en/CJFDTotal-MDKT201905006.htm
    WHO(World Health Organization). 2011. Guidelines for Drinking water Quality[M]. 4rd ed. WHO.
    Wu J W, Xu S Q, Zhai X Q, et al. 2015. Hydrochemical characteristics and water sources discrimination of coal-bearing sandstone water in the north eighth mining area of Taoyuan coal mine in Huaibei[J]. Journal of Safety Science and Technology, 11 (1): 84-90. http://en.cnki.com.cn/Article_en/CJFDTOTAL-LDBK201501016.htm
    Xu G Q, Wang W N, Zhang H T. 2009. The deep thermal damage analysis in Huainan mining area and research on resource utilization of geothermal water[J]. China Coal, 35 (10): 114-116, 132. http://www.cnki.com.cn/Article/CJFDTotal-ZGME200910040.htm
    Yang X C, Kang F X, Wang X P, et al. 2019. Hydrochemical features of geothermal reservoir geotemperature field in sandstone porosity and enrichment mechanism of geothermal water: A case of geothermal reservoir of Guantao Formation in the Lubei[J]. Acta Geologica Sinica, 93 (3): 738-750. http://en.cnki.com.cn/Article_en/CJFDTotal-DZXE201903016.htm
    Yao B J, Liu Q, Ren B, et al. 2019. Analysis of cyclic evolution of karst water system in typical karst rocky desertification area[J]. Journal of Engineering Geology, 27 (5): 1179-1187. http://en.cnki.com.cn/Article_en/CJFDTotal-GCDZ201905030.htm
    Yuan J F, Deng G S, Xu F, et al. 2017. Hydrogeochemical characteristics of groundwater in the Xide geothermal field, Southwest Sichuan, China[J]. Geoscience, 31 (1): 200-208. doi: 10.1007/s13146-017-0333-x
    Zhang H T, Xu G Q, Chen X Q, et al. 2019. Hydrogeochemical evolution of multilayer aquifers in a massive coalfield[J]. Environmental Earth Sciences, 78 (24): 1-17. doi: 10.1007%2Fs12665-019-8694-1
    Zhang L P, Ma B Q, Fan B, et al. 2020. Hydrochemical origin and indicative significance of deep geothermal water in Lanzhou City[J]. Water Resources and Hydropower Engineering, 51 (8): 129-139.
    Zhang R Q, Liang X, Jin M G, et al. 2011. General hydrogeology[M]. 6th ed. Beijing: Geological Publishing Press.
    Zhang W Q, Zhang G P, Li W, et al. 2006. A model of Fisher's discriminant analysis for evaluating water inrush risk from coal seam floor[J]. Journal of China Coal Society, 38 (10): 1831-1836. http://www.ingentaconnect.com/content/jccs/jccs/2013/00000038/00000010/art00019
    陈凯, 孙林华. 2019. 任楼煤矿地下水化学组成及其控制因素分析[J]. 煤炭科学技术, 47 (10): 240-244. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201910032.htm
    陈陆望, 许冬清, 殷晓曦, 等. 2017. 华北隐伏型煤矿区地下水化学及其控制因素分析——以宿县矿区主要突水含水层为例[J]. 煤炭学报, 42 (4): 996-1004. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201704024.htm
    桂和荣, 陈松. 2016. 宿南矿区地下水同位素地球化学特征及地质意义[J]. 地学前缘, 23 (3): 133-139. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201603021.htm
    李超, 陈正山, 王甘露, 等. 2020. 贵州东南部地热水地球化学特征及成因[J]. 矿物岩石地球化学通报, 39 (3): 614-625. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH202003021.htm
    李红阳, 朱耀武, 易继承. 2007. 淮南矿区地温变化规律及其异常因素分析[J]. 煤矿安全, 39 (11): 68-71. doi: 10.3969/j.issn.1003-496X.2007.11.024
    李林果, 李百祥. 2017. 从青海共和-贵德盆地与山地地温场特征探讨热源机制和地热系统[J]. 物探与化探, 41 (1): 29-34. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201701005.htm
    李强, 吉勤克补子, 洪运胜, 等. 2018. 遵义中部地区岩溶热矿水水化学特征及其成因分析[J]. 煤炭技术, 37 (10): 136-139. https://www.cnki.com.cn/Article/CJFDTOTAL-MTJS201810051.htm
    李长兴, 辛程鹏, 李回贵, 等. 2020. 基于Fisher-逐步判别法的煤与瓦斯突出预测[J]. 中国矿业, 29 (7): 106-111. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA202007019.htm
    廖昕, 蒋翰, 徐正宣, 等. 2020. 西藏东部阿旺地下热水化学特征及其成因初探[J]. 工程地质学报, 28 (4): 916-924. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202004025.htm
    刘明亮, 何曈, 吴启帆, 等. 2020. 雄安新区地热水化学特征及其指示意义[J]. 地球科学, 45 (6): 2221-2231. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202006032.htm
    罗璐, 毛翔, 汪新伟, 等. 2020. 太原盆地西温庄隆起硫酸盐型岩溶热矿水成因研究[J]. 工程地质学报, 28 (4): 925-934. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202004026.htm
    鲁金涛, 李夕兵, 宫凤强, 等. 2012. 基于主成分分析与Fisher判别分析法的矿井突水水源识别方法[J]. 中国安全科学学报, 22 (7): 109-115. doi: 10.3969/j.issn.1003-3033.2012.07.018
    彭涛, 吴基文, 任自强, 等. 2015a. 两淮煤田大地热流分布及其构造控制[J]. 地球物理学报, 58 (7): 2391-2401. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201507016.htm
    彭涛, 吴基文, 任自强, 等. 2015b. 淮北煤田现今地温场特征及大地热流分布[J]. 地球科学: 中国地质大学学报, (6): 1083-1092. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201506013.htm
    汪子涛, 刘启蒙, 刘瑜. 2019. 淮南煤田地下水水化学空间分布及其形成作用[J]. 煤田地质与勘探, 47 (5): 40-47. doi: 10.3969/j.issn.1001-1986.2019.05.006
    吴基文, 徐胜平, 翟晓荣, 等. 2015. 淮北桃园煤矿北八采区煤系砂岩水水化学特征及其水源判别[J]. 中国安全生产科学技术, 11 (1): 84-90. https://www.cnki.com.cn/Article/CJFDTOTAL-LDBK201501016.htm
    许光泉, 王伟宁, 张海涛. 2009. 淮南矿区深部热害分析及热水资源化研究[J]. 中国煤炭, 35 (10): 114-116, 132. doi: 10.3969/j.issn.1006-530X.2009.10.034
    杨询昌, 康凤新, 王学鹏, 等. 2019. 砂岩孔隙热储地温场水化学场特征及地热水富集机理-鲁北馆陶组热储典型案例[J]. 地质学报, 93 (3): 738-750. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201903016.htm
    姚邦杰, 刘琦, 任标, 等. 2019. 典型石漠化地区岩溶水系统循环演化分析[J]. 工程地质学报, 27 (5): 1179-1187. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201905030.htm
    袁建飞, 邓国仕, 徐芬, 等. 2017. 川西南喜德热田地下水水文地球化学特征[J]. 现代地质, 31 (1): 200-208. doi: 10.3969/j.issn.1000-8527.2017.01.019
    张凌鹏, 马宝强, 范斌, 等. 2020. 兰州市城区深层地热水的水化学成因及其指示意义[J]. 水利水电技术, 51 (8): 129-139. https://www.cnki.com.cn/Article/CJFDTOTAL-SJWJ202008016.htm
    张人权, 梁杏, 靳孟贵, 等. 2011水文地质学基础[M]. 6版. 北京: 地质出版社: 59-65.
    张文泉, 张广鹏, 李伟, 等. 2013. 煤层底板突水危险性的Fisher判别分析模型[J]. 煤炭学报, 38 (10): 1831-1836. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201310022.htm
    中华人民共和国卫生部和中国国家标准化管理委员会. 2006. 中华人民共和国国家标准: 生活饮用水卫生标准(GB 5749-2006)[S]. 北京: 中国标准出版社.
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  117
  • HTML全文浏览量:  65
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-15
  • 修回日期:  2021-07-15
  • 网络出版日期:  2021-09-03
  • 刊出日期:  2021-09-03

目录

    /

    返回文章
    返回