煤地质学研究新进展及其前景展望——基于International Journal of Coal Geology 2016~2020年文献统计

鲍园 孟佳豪 胡宜亮 孙强

鲍园, 孟佳豪, 胡宜亮, 等. 2021. 煤地质学研究新进展及其前景展望——基于International Journal ofCoal Geology 2016~2020年文献统计[J]. 工程地质学报, 29(4): 1139-1147. doi: 10.13544/j.cnki.jeg.2021-0339
引用本文: 鲍园, 孟佳豪, 胡宜亮, 等. 2021. 煤地质学研究新进展及其前景展望——基于International Journal ofCoal Geology 2016~2020年文献统计[J]. 工程地质学报, 29(4): 1139-1147. doi: 10.13544/j.cnki.jeg.2021-0339
Bao Yuan, Meng Jiahao, Hu Yiliang, et al. 2021. New progress and prospect of coal geology——Based on analysis of papers published in International Journal of Coal Geology from 2016 to 2020[J]. Journal of Engineering Geology, 29(4): 1139-1147. doi: 10.13544/j.cnki.jeg.2021-0339
Citation: Bao Yuan, Meng Jiahao, Hu Yiliang, et al. 2021. New progress and prospect of coal geology——Based on analysis of papers published in International Journal of Coal Geology from 2016 to 2020[J]. Journal of Engineering Geology, 29(4): 1139-1147. doi: 10.13544/j.cnki.jeg.2021-0339

煤地质学研究新进展及其前景展望——基于International Journal of Coal Geology 2016~2020年文献统计

doi: 10.13544/j.cnki.jeg.2021-0339
基金项目: 

国家自然科学基金项目 41972183

国家自然科学基金项目 41502156

详细信息
    通讯作者:

    鲍园(1983-),男,博士,副教授,从事非常规油气地质研究. E-mail: y.bao@foxmail.com

  • 中图分类号: P618.11

NEW PROGRESS AND PROSPECT OF COAL GEOLOGY—BASED ON ANALYSIS OF PAPERS PUBLISHED IN INTERNATIONAL JOURNAL OF COAL GEOLOGY FROM 2016 TO 2020

Funds: 

the National Natural Science Foundation of China 41972183

the National Natural Science Foundation of China 41502156

  • 摘要: 煤地质学是应用地质学与地球化学的理论和方法研究煤层、煤系及其共伴生矿产资源的物质组成、成因、物理和化学性质及其空间展布规律等的学科。在国家倡导生态文明绿色发展以及2030年前实现碳达峰的战略目标背景下,煤地质学的研究重点也在逐渐发生变化。通过对2016~2020年在International Journal of Coal Geology期刊上发表的文章进行统计分析,阐述了中国煤地质学的发展进程,重点探讨了煤地质学当前的研究热点内容,提出了煤地质学未来可能的发展方向。结果发现:中国学者在该期刊上发表论文数量最多,占27.4%,其次为美国和澳大利亚;按第一作者所属单位依次为中国矿业大学(北京)、昆士兰大学和中国地质大学(北京);按研究方向,煤岩学和有机地球化学方向的论文数量最多,占31.3%,是近5年的研究热点;其次是煤中矿物质、微量元素与地球化学和煤系气方向;预测未来煤炭洁净化利用方向的研究将逐渐增多,与煤地质学相关的交叉学科也将快速发展。
  • 图  1  第一作者所属国家的发文数量统计结果

    Figure  1.  Statistical results of the papers published by the countries of the first author

    图  2  不同年份的第一作者所属国家的发文数量统计结果

    Figure  2.  Statistical results of the papers published by the countries of the first author in different years

    图  3  第一作者所属单位发文数量及其占比统计结果

    Figure  3.  Statistical results of the number and proportion of papers published by the units of the first author

    图  4  近5年热点研究内容的发文数量统计结果

    Figure  4.  Statistical results of the hot research articles published in recent five years

    表  1  不同研究方向的发文数量近10年统计结果

    Table  1.   Statistical results of the published paper numbers of different research contents in recent ten years

    研究方向 年份 合计
    2011~2015 2016 2017 2018 2019 2020
    沉积环境 38 22 21 25 16 22 144
    煤岩学和有机地球化学1 124 36 40 63 53 53 369
    煤中矿物质、微量元素与地球化学 87 32 23 32 19 20 213
    煤系气2 189 33 16 30 27 25 320
    地下气化及煤自燃3 35 8 7 10 2 4 66
    煤炭洁净化利用 0 7 17 4 1 7 36
    古生物 19 3 2 4 3 4 35
    煤炭开采及矿井水处理4 67 22 15 8 14 11 137
    其他 69 5 2 7 4 5 92
    总计 628 168 143 183 139 151 1412
    本文根据宋党育等(2016)的研究方向分类做了调整,体现在:1、石油、天然气、油页岩与页岩气中与有机化学相关的文章以及煤化作用归为煤岩学和有机地球化学;2、煤系气包含与煤系地层相关的煤层气、页岩气、致密砂岩气等非常规天然气;3、煤自燃与地下气化归为一类;4、煤炭资源生产、矿井瓦斯和矿井水归为煤炭开采及矿井水处理
    下载: 导出CSV
  • Al-Hajeri M,Sauerer B,Furmann A,et al. 2020. Maturity estimation for Type Ⅱ-S kerogen using Raman spectroscopy-A case study from the Najmah and Makhul Formations in Kuwait[J]. International Journal of Coal Geology, 217:103317. doi: 10.1016/j.coal.2019.103317
    Baludikay B K, François C, Sforna M C, et al. 2018. Raman microspectroscopy, bitumen reflectance and illite crystallinity scale: comparison of different geothermometry methods on fossiliferous Proterozoic sedimentary basins(DR Congo, Mauritania and Australia)[J]. International Journal of Coal Geology, 191 : 80-94. doi: 10.1016/j.coal.2018.03.007
    Bao Y, Ju Y W, Yin Z S, et al. 2020. Influence of reservoir properties on the methane adsorption capacity and fractal features of coal and shale in the upper Permian coal measures of the South Sichuan coalfield, China[J]. Energy Exploration & Exploitation, 38 (1): 57-78. http://www.researchgate.net/publication/335981671_Influence_of_reservoir_properties_on_the_methane_adsorption_capacity_and_fractal_features_of_coal_and_shale_in_the_upper_Permian_coal_measures_of_the_South_Sichuan_coalfield_China
    Bi P C, Che A L, Feng S K. 2020. Complex geological structure indentification and parameter estimation method based on 3D resistivity measurement[J]. Journal of Engineering Geology, 28 (4): 887-895.
    Busch A, Han F S, Magill C R. 2019. Paleofloral dependence of coal methane sorption capacity[J]. International Journal of Coal Geology, 211: 103232. doi: 10.1016/j.coal.2019.103232
    Cao D Y, Wang T, Wang D, et al. 2010. Coal geology: its meaning and development trend[J]. Journal of China Coal Society, 35 (5): 765-769. http://www.mtxb.com.cn/CN/Y2010/V35/I5/765
    Cao D Y, Wei Y C, Ning S Z. 2018. The framework of basic geological works for green coal[J]. Coal Geology & Exploration, 46 (3): 1-5. http://en.cnki.com.cn/Article_en/CJFDTotal-MDKT201803001.htm
    Chalmers G R L. Bustin R M. 2017. A multidisciplinary approach in determining the maceral(kerogen type) and mineralogical composition of Upper Cretaceous Eagle Ford Formation: Impact on pore development and pore size distribution[J]. International Journal of Coal Geology, 171 : 93-110. doi: 10.1016/j.coal.2017.01.004
    Chattaraj S, Mohanty D, Kumar T, et al. 2019. Comparative study on sorption characteristics of coal seams from Barakar and Raniganj formations of Damodar Valley Basin, India[J]. International Journal of Coal Geology, 212: 103202. doi: 10.1016/j.coal.2019.05.009
    Connell L D. 2016. A new interpretation of the response of coal permeability to changes in pore pressure, stress and matrix shrinkage[J]. International Journal of Coal Geology, 162 : 169-182. doi: 10.1016/j.coal.2016.06.012
    Fan L, Liu S. 2019. Evaluation of permeability damage for stressed coal with cyclic loading: An experimental study[J]. International Journal of Coal Geology, 216: 103338. doi: 10.1016/j.coal.2019.103338
    Guan S Q. 2011. Analysis of development course of coal geology and its impacting factors in China[J]. Coal Geology of China, 23 (1): 66-71. http://d.wanfangdata.com.cn/Periodical/zgmtdz201101017
    Han D X, Yang Q. 1980. Chinese coalfield geology(Ⅱ): Coal accumulation in China[M]. Beijing: China Coal Industry Publishing House.
    Hu S R, Peng J C, Hao G Q, et al. 2012. Geotectonic theory and the fourth prediction or potential evaluation of China's coalfields[J]. Coal Geology & Exploration, 40 (3): 1-5. http://en.cnki.com.cn/Article_en/CJFDTOTAL-MDKT201203002.htm
    Jing Z, Mahoney S A, Rodrigues S, et al. 2018. A preliminary study of oxidant stimulation for enhancing coal seam permeability: Effects of sodium hypochlorite oxidation on subbituminous and bituminous Australian coals[J]. International Journal of Coal Geology, 200 : 36-44. doi: 10.1016/j.coal.2018.10.006
    Kang Y, Huang F, You L, et al. 2016. Impact of fracturing fluid on multi-scale mass transport in coalbed methane reservoirs[J]. International Journal of Coal Geology, 154-155 : 123-135. doi: 10.1016/j.coal.2016.01.003
    Karayiǧit A I, Littke R, Querol X, et al. 2017. The Miocene coal seams in the Soma Basin(W. Turkey): Insights from coal petrography, mineralogy and geochemistry[J]. International Journal of Coal Geology, 173 : 110-128. doi: 10.1016/j.coal.2017.03.004
    Karayiǧit A I, Oskay R G, Tuncer A, et al. 2016. A multidisciplinary study of the Gölbaşı-Harmanlı coal seam, SE Turkey[J]. International Journal of Coal Geology, 167 : 31-47. doi: 10.1016/j.coal.2016.09.005
    Li H, Lin B, Yang W, et al. 2016. Experimental study on the petrophysical variation of different rank coals with microwave treatment[J]. International Journal of Coal Geology, 154-155 : 82-91. doi: 10.1016/j.coal.2015.12.010
    Li J, Zhuang X, Yuan W, et al. 2016. Mineral composition and geochemical characteristics of the Li-Ga-rich coals in the Buertaohai-Tianjiashipan mining district, Jungar Coalfield, Inner Mongolia[J]. International Journal of Coal Geology, 167 : 157-175. doi: 10.1016/j.coal.2016.09.018
    Li K, Rimmer S M, Presswood S M, et al. 2020. Raman spectroscopy of intruded coals from the Illinois Basin: Correlation with rank and estimated alteration temperature[J]. International Journal of Coal Geology, 219: 103369. doi: 10.1016/j.coal.2019.103369
    Li Y, Wang Y B, Meng S Z, et al. 2020. Theoretical basis and prospect of coal measure unconventional natural gas co-production[J]. Journal of China Coal Society, 45 (4): 1406-1418.
    Manjunath G L, Jha B. 2019. Nanoscale fracture mechanics of Gondwana coal[J]. International Journal of Coal Geology, 204 : 102-112. doi: 10.1016/j.coal.2019.02.007
    Miao F N. 1963. Several issues in the development of coal geology in my country[J]. Chinese Science Bulletin, (4): 39-44.
    Miao Y, Warny S, Clift P D, et al. 2018. Climatic or tectonic control on organic matter deposition in the South China Sea?A lesson learned from a comprehensive Neogene palynological study of IODP Site U1433[J]. International Journal of Coal Geology, 190 : 166-177. doi: 10.1016/j.coal.2017.10.003
    Ministry of Science and Technology of the People's Republic of China. 2018. Notice of the Ministry of science and technology, the Ministry of education, the Ministry of human resources and social security, the Chinese Academy of Sciences and the Chinese Academy of Engineering on carrying out the special action of "only papers, only titles, only academic qualifications, only awards"[EB/OL]. (2018-10-23)[2021-7-15]. http://www.most.gov.cn/xxgk/xinxifenlei/fdzdgknrfgzcgfxwj/gfxwj2018/201902/t20190213_145084.html.
    Misch D, Gross D, Huang Q, et al. 2016. Light and trace element composition of Carboniferous coals from the Donets Basin(Ukraine): An electron microprobe study[J]. International Journal of Coal Geology, 168 : 108-118. doi: 10.1016/j.coal.2016.06.004
    Mumm A S, Inan S. 2016. Microscale organic maturity determination of graptolites using Raman spectroscopy[J]. International Journal of Coal Geology, 162 : 96-107. doi: 10.1016/j.coal.2016.05.002
    National Bureau of Statistics of China. 2020. China Statistical Yearbook[M]. Beijing: China Statistics Press.
    Püspöki Z, Hámor-Vidó M, Pummer T, et al. 2017. A sequence stratigraphic investigation of a Miocene formation supported by coal seam quality parameters-Central Paratethys, N-Hungary[J]. International Journal of Coal Geology, 179 : 196-210. doi: 10.1016/j.coal.2017.05.016
    Ramandi H L, Mostaghimi P, Armstrong R T, et al. 2016. Porosity and permeability characterization of coal: a micro-computed tomography study[J]. International Journal of Coal Geology, 154-155 : 57-68. doi: 10.1016/j.coal.2015.10.001
    Rantitsch G, Lämmerer W, Fisslthaler E, et al. 2016. On the discrimination of semi-graphite and graphite by Raman spectroscopy[J]. International Journal of Coal Geology, 159 : 48-56. doi: 10.1016/j.coal.2016.04.001
    Robeck E, Huo D. 2016. A more accurate method for estimating in situ coal density and mineral matter from ash and specific energy determinations[J]. International Journal of Coal Geology, 168 : 237-252. doi: 10.1016/j.coal.2016.11.007
    Sauerer B, Craddock P R, AlJohani M D, et al. 2017. Fast and accurate shale maturity determination by Raman spectroscopy measurement with minimal sample preparation[J]. International Journal of Coal Geology, 173 : 150-157. doi: 10.1016/j.coal.2017.02.008
    Saurabh S, Harpalani S, Singh V K. 2016. Implications of stress re-distribution and rock failure with continued gas depletion in coalbed methane reservoirs[J]. International Journal of Coal Geology, 162 : 183-192. doi: 10.1016/j.coal.2016.06.006
    Smedowski Ƚ, Piechaczek M. 2016. Impact of weathering on coal properties and evolution of coke quality described by optical and mechanical parameters[J]. International Journal of Coal Geology, 168 : 119-130. doi: 10.1016/j.coal.2016.08.005
    Song D Y, Yuan L, Bai W B, et al. 2016. Advance and frontier of coal geology[J]. Coal Geology & Exploration, 44 (4): 1-7. http://or.nsfc.gov.cn/handle/00001903-5/462376
    Song D, Ji X, Li Y, et al. 2020. Heterogeneous development of micropores in medium-high rank coal and its relationship with adsorption capacity[J]. International Journal of Coal Geology, 226: 103497. doi: 10.1016/j.coal.2020.103497
    Spiro B F, Liu J, Dai S, et al. 2019. Marine derived 87Sr/86Sr in coal, a new key to geochronology and palaeoenvironment: Elucidation of the India-Eurasia and China-Indochina collisions in Yunnan, China[J]. International Journal of Coal Geology, 215: 103304. doi: 10.1016/j.coal.2019.103304
    Sun Q H, Ma F S, Zhao H J, et al. 2019. Deformation and failure of surrounding rock considering weakening of mechanical parameters under seepage-damage-stress coupling[J]. Journal of Engineering Geology, 27 (5): 955-965. http://en.cnki.com.cn/Article_en/CJFDTOTAL-GCDZ201905003.htm
    Sun Q P, Zhao Q, Jiang X C, et al. 2021. Prospects and strategies of CBM exploration and development in China under the new situation[J]. Journal of China Coal Society, 46 (1): 65-76.
    Taggart R K, Hower J C, Hsu-Kim H. 2018. Effects of roasting additives and leaching parameters on the extraction of rare earth elements from coal fly ash[J]. International Journal of Coal Geology, 196 : 106-114. doi: 10.1016/j.coal.2018.06.021
    Wang T, Shao L Y, Xia Y C, et al. 2017. Major achievements and future research directions of the coal geology in China[J]. Geology in China, 44 (2): 242-262. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI201702004.htm
    Wang Z, Dai S, Zou J, et al. 2019. Rare earth elements and yttrium in coal ash from the Luzhou power plant in Sichuan, Southwest China: Concentration, characterization and optimized extraction[J]. International Journal of Coal Geology, 203 : 1-14. doi: 10.1016/j.coal.2019.01.001
    Xie H P, Ren S H, Xie Y C, et al. 2021. Development opportunities of the coal industry towards the goal of carbon neutrality[J/OL]. Journal of China Coal Society, 2021-07-15. https://doi.org/10.13225/j.cnki.jccs.2021.0973.
    Xu P, Zhang B, Zeng X, et al. 2017. Influence of Hg occurrence in coal on accuracy of Hg direct measurement based on thermal decomposition[J]. International Journal of Coal Geology, 170 : 14-18. doi: 10.1016/j.coal.2016.08.023
    Yan X, Dai S, Graham I T, et al. 2018. Determination of Eu concentrations in coal, fly ash and sedimentary rocks using a cation exchange resin and inductively coupled plasma mass spectrometry(ICP-MS)[J]. International Journal of Coal Geology, 191 : 152-156. doi: 10.1016/j.coal.2018.03.009
    Yan X, Dai S, Graham I T, et al. 2019. Mineralogy and geochemistry of the Palaeogene low-rank coal from the Baise Coalfield, Guangxi Province, China[J]. International Journal of Coal Geology, 214: 103282. doi: 10.1016/j.coal.2019.103282
    Yang Q, Han D X. 1979. Chinese coalfield geology(I): basic theory of coalfield geology[M]. Beijing: China Coal Industry Publishing House.
    Yang X L, Zhou G Q. 1996. China coal industry encyclopaedia, geology & survey volume[M]. Beijing: China Coal Industry Publishing House.
    Yao J M, Yao X, Wu Z Q, et al. 2020. Inversion of underground goaf in Zhenfeng coal mine in Guizhou Province based on InSAR three-dimension decomposition technology[J]. Journal of Engineering Geology, 28 (4): 852-866.
    Zhang H, Zhang Q, Cao D Y, et al. 2010. Status and Development Strategy of Coal Geology in China[J]. Advances in Earth Science, 25 (4): 343-352. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXJZ201004001.htm
    毕鹏程, 车爱兰, 冯少孔. 2020. 基于三维电测量的复杂地质构造识别及参数估计方法[J]. 工程地质学报, 28 (4): 887-895. doi: 10.13544/j.cnki.jeg.2019-347
    曹代勇, 王佟, 王丹, 等. 2010. 煤炭地质学——涵义与发展趋势[J]. 煤炭学报, 35 (5): 765-769. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201005017.htm
    曹代勇, 魏迎春, 宁树正. 2018. 绿色煤炭基础地质工作框架刍议[J]. 煤田地质与勘探, 46 (3): 1-5. doi: 10.3969/j.issn.1001-1986.2018.03.001
    关世桥. 2011. 中国煤地质学发展历程及其影响因素分析[J]. 中国煤炭地质, 23 (1): 66-71. doi: 10.3969/j.issn.1674-1803.2011.01.16
    韩德馨, 杨起. 1980. 中国煤田地质学(下册)——中国聚煤规律[M]. 北京: 煤炭工业出版社.
    胡社荣, 彭纪超, 郝国强, 等. 2012. 大地构造理论和中国4次煤田预测与潜力评价[J]. 煤田地质与勘探, 40 (3): 1-5. doi: 10.3969/j.issn.1001-1986.2012.03.001
    李勇, 王延斌, 孟尚志, 等. 2020. 煤系非常规天然气合采地质基础理论进展及展望[J]. 煤炭学报, 45 (4): 1406-1418. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202004023.htm
    缪富恩. 1963. 我国煤地质学发展的几个问题[J]. 科学通报, (4): 39-44. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB196304004.htm
    宋党育, 袁镭, 白万备, 等. 2016. 煤地质学研究进展与前沿[J]. 煤田地质与勘探, 44 (4): 1-7. doi: 10.3969/j.issn.1001-1986.2016.04.001
    孙琪皓, 马凤山, 赵海军, 等. 2019. 基于渗流-损伤-应力耦合作用下考虑力学参数弱化的巷道围岩变形破坏分析[J]. 工程地质学报, 27 (5): 955-965. doi: 10.13544/j.cnki.jeg.2019171
    孙钦平, 赵群, 姜馨淳, 等. 2021. 新形势下中国煤层气勘探开发前景与对策思考[J]. 煤炭学报, 46 (1): 65-76. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202101007.htm
    王佟, 邵龙义, 夏玉成, 等. 2017. 中国煤炭地质研究取得的重大进展与今后的主要研究方向[J]. 中国地质, 44 (2): 242-262. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201702004.htm
    谢和平, 任世华, 谢亚辰, 等. 2021. 碳中和目标下煤炭行业发展机遇[J/OL]. 煤炭学报, 2021-07-15. https://doi.org/10.13225/j.cnki.jccs.2021.0973.
    杨起, 韩德馨. 1979. 中国煤田地质学(上册)——煤田地质基础理论[M]. 北京: 煤炭工业出版社.
    杨锡禄, 周国铨. 1996. 中国煤炭工业百科全书: 地质·测量卷[M]. 北京: 煤炭工业出版社.
    姚佳明, 姚鑫, 吴作启, 等. 2020. 基于InSAR三维分解技术的贵州省贞丰某煤矿地下采空区反演[J]. 工程地质学报, 28 (4): 852-866. doi: 10.13544/j.cnki.jeg.2019-370
    张泓, 张群, 曹代勇, 等. 2010. 中国煤田地质学的现状与发展战略[J]. 地球科学进展, 25 (4): 343-352. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201004001.htm
    中华人民共和国国家统计局. 2020. 中国统计年鉴[M]. 北京: 中国统计出版社.
    中华人民共和国科学技术部. 2018. 科技部教育部人力资源社会保障部中国科学院工程院关于开展清理"唯论文、唯职称、唯学历、唯奖项"专项行动的通知[EB/OL]. (2018-10-23)[2021-7-15]. http:www.most.gov.cnxxgkxinxifenleifdzdgknrfgzcgfxwj/gfxwj2018/201902/t20190213_145084.html.
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  135
  • HTML全文浏览量:  51
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-15
  • 修回日期:  2021-07-26
  • 网络出版日期:  2021-09-03
  • 刊出日期:  2021-09-03

目录

    /

    返回文章
    返回