海底滑坡中滑水效应的危害

单治钢 廖哲贤 董友扣 王栋 崔岚

单治钢, 廖哲贤, 董友扣, 等. 2021.海底滑坡中滑水效应的危害[J].工程地质学报, 29(6): 1815-1822. doi: 10.13544/j.cnki.jeg.2021-0342
引用本文: 单治钢, 廖哲贤, 董友扣, 等. 2021.海底滑坡中滑水效应的危害[J].工程地质学报, 29(6): 1815-1822. doi: 10.13544/j.cnki.jeg.2021-0342
Shan Zhigang, Liao Zhexian, Dong Youkou, et al. 2021. Investigation of consequence of hydroplaning in submarine landslide [J]. Jourmal of Engineering Geology, 29(6): 1815-1822. doi: 10.13544/j.cnki.jeg.2021-0342
Citation: Shan Zhigang, Liao Zhexian, Dong Youkou, et al. 2021. Investigation of consequence of hydroplaning in submarine landslide [J]. Jourmal of Engineering Geology, 29(6): 1815-1822. doi: 10.13544/j.cnki.jeg.2021-0342

海底滑坡中滑水效应的危害

doi: 10.13544/j.cnki.jeg.2021-0342
基金项目: 

国家自然科学基金 51909248

详细信息
    作者简介:

    单治钢(1965-),男,学士,正高级工程师,博士生导师,主要从事海洋地质灾害识别与评价方面的研究和工程实践. E-mail: shan_zg@hdec.com

    通讯作者:

    董友扣(1987-),男,博士,副教授,硕士生导师,主要从事海底滑坡和岸坡冲刷的数值模拟. E-mail: dongyk@cug.edu.cn

  • 中图分类号: TU443

INVESTIGATION OF CONSEQUENCE OF HYDROPLANING IN SUBMARINE LANDSLIDE

Funds: 

the National Natural Science Foundation of China 51909248

  • 摘要: 海底滑坡是危害最大的海洋地质灾害之一,可以沿海底斜坡搬运超大体积的沉积物,并作高速运动。滑水是海底滑坡高速和长距离滑动的主要原因,涉及复杂的滑坡体-环境水相互作用。本文采用新型数值方法物质点法对滑水的危害性进行研究,分别对室内试验和真实滑坡案例中滑坡体的运动过程进行了反分析。考虑滑水发生的力学条件,将上部流体拖曳阻力、底部海床阻力和滑水发生时的水垫层阻力共同作用于滑坡体,得到的滑坡体运动距离与试验和观测结果一致。分析了滑坡体在滑水发生后的动力特性,研究表明滑水大幅增强了海底滑坡的运动距离和滑动速度。
  • 图  1  滑坡体受力示意图

    Figure  1.  Schematic for sliding mass

    图  2  小尺度水槽试验滑动距离

    Figure  2.  Small-scale flume test results

    图  3  陆上滑坡体速度云图(时刻5s)

    Figure  3.  Velocity contour for subaerial sliding mass(time 5s)

    图  4  水下滑坡体速度云图(时刻5s)

    Figure  4.  Velocity contour for submarine sliding mass(time 5s)

    图  5  滑坡体速度位移时程曲线

    Figure  5.  History of velocity and displacement of sliding mass

    图  6  Finneidfjord滑坡地形图和沉积物抗剪强度(Ilstad et al., 2004a)

    a. 滑坡区分为4个区域; b. 滑出块体不排水抗剪强度

    Figure  6.  Morphology and sediment strength in Finneidfjord slide(Ilstad et al., 2004a)

    图  7  不同网格尺寸对滑动距离和滑动形态的影响

    a. 网格尺寸0.25m(1000s); b. 网格尺寸0.125m(1000s)

    Figure  7.  Influence of mesh size on runout distance and morphology

    图  8  滑水对滑坡体滑动距离和滑动形态的影响

    a. 无滑水; b. 有滑水

    Figure  8.  Influence of hydroplaning on runout distance and morphology

    图  9  考虑滑水效应时滑坡体的最终形态

    Figure  9.  Final morphology of sliding mass with hydroplaning

  • Coyne M J, Dollar J J. 2005. Shell pipeline's response and repairs after hurricane Ivan[C]//Proceedings of Offshore Technology Conference: 17734.
    De Blasio F V, Engvik L, Harbitz C B, et al. 2004. Hydroplaning and submarine debris flows[J]. Journal of Geophysical Research, 109 (C1): 1-15.
    de Vaucorbeil A, Nguyen V P. 2020. Modelling contacts with a total Lagrangian material point method[J]. Computer Methods in Applied Mechanics and Engineering, 373: 113503.
    Dong Y, Grabe J. 2018. Large scale parallelisation of the material point method with multiple GPUs[J]. Computers and Geotechnics, 101 : 149-158. doi: 10.1016/j.compgeo.2018.04.001
    Dong Y, Wang D, Randolph M F. 2015. A GPU parallel computing strategy for the material point method[J]. Computers and Geotechnics, 66 : 31-38. doi: 10.1016/j.compgeo.2015.01.009
    Dong Y, Wang D, Randolph M. 2017a. Runout of submarine landslide simulated with material point method[J]. Journal of Hydrodynamics, 29 (3): 438-444. doi: 10.1016/S1001-6058(16)60754-0
    Dong Y, Wang D, Randolph M. 2017b. Investigation of impact forces on pipeline by submarine landslide with material point method[J]. Ocean Engineering, 146 (1): 21-28. http://www.sciencedirect.com/science?_ob=ShoppingCartURL&_method=add&_eid=1-s2.0-S0029801817305279&originContentFamily=serial&_origin=article&_ts=1506605749&md5=7c29c1dd9977410462bd8e453e6cef9c
    Dong Y, Wang D, Randolph M. 2020a. Investigation of impact forces on mudmat by submarine landslide with material point method[J]. Applied Ocean Research, 146 : 21-28.
    Dong Y, Wang D, Cui L. 2020b. Assessment of depth averaged method in analysing runout of submarine landslide[J]. Landslides, 17 : 543-555. doi: 10.1007/s10346-019-01297-2
    Dong Y. 2020. Reseeding of particles in the material point method for soil-structure interactions[J]. Computers and Geotechnics, 127: 103716. doi: 10.1016/j.compgeo.2020.103716
    Elverhøi A, Issler D, De Blasio F, et al. 2005. Emerging insights into the dynamics of submarine debris flows[J]. Natural Hazards and Earth System Sciences, 5 : 633-648. doi: 10.5194/nhess-5-633-2005
    Fan N, Nian T K, Jiao H B, et al. 2019. Effect and mechanism of disaster reduction of pipelines with double-elliptic streamline contour against impact of submarine landslides[J]. Rock and Soil Mechanics, 40 (1): 413-420. http://www.researchgate.net/publication/332628117_Effect_and_mechanism_of_disaster_reduction_of_pipelines_with_double-elliptic_streamline_contour_against_impact_of_submarine_landslides
    Fan N, Nian T K, Zhao W, et al. 2018. Rheological test and strength model of submarine mud flow[J]. Rock and Soil Mechanics, 39 (9): 3195-3202. http://search.cnki.net/down/default.aspx?filename=YTLX201809012&dbcode=CJFD&year=2018&dflag=pdfdown
    Fan N, Sahdi F, Zhang W C, et al. 2021. Effect of pipeline-seabed gaps on vertical forces of a pipeline induced by the submarine slide impact[J]. Ocean Engineering, 221: 108506. doi: 10.1016/j.oceaneng.2020.108506
    Feng B, Sun H L, Cai Y Q, et al. 2019. Experimental study of submarine landslide impact on offshore wind power piles[J]. The Ocean Engineering, 37 (6): 114-121. http://en.cnki.com.cn/Article_en/CJFDTotal-HYGC201906012.htm
    Hampton M A, Lee H J, Locat J. 1996. Submarine landslides[J]. Geophysics, 34 (1): 33-59. doi: 10.1029/95RG03287
    Harbitz C B, Parker G, Elverhøi A, et al. 2003. Hydroplaning of subaqueous debris flows and glide blocks: Analytical solutions and discussion[J]. Journal of Geophysical Research, 108(B7): 2349. doi: 10.1029/2001JB001454/pdf
    Huang X, García M. 1997. A perturbation solution for Bingham-plastic mudflows[J]. Journal of Hydraulic Engineering, 123 (11): 986-994. doi: 10.1061/(ASCE)0733-9429(1997)123:11(986)
    Huo Y D, Nian T K, Jiao H B, et al. 2019. Seismic stability of submarine clay slopes based on upper bound approach[J]. Journal of Engineering Geology, 27 (2): 408-414. http://en.cnki.com.cn/Article_en/CJFDTotal-GCDZ201902022.htm
    Ilstad T, Elverhøi A, Issler D, et al. 2004a. Subaqueous debris flow behaviour and its dependence on the sand/clay ratio: A laboratory study using particle tracking[J]. Marine Geology, 213 : 415-438. doi: 10.1016/j.margeo.2004.10.017
    Ilstad T, De Blasio F, Elverhøi A, et al. 2004b. On the frontal dynamics and morphology of submarine debris flows[J]. Marine Geology, 213 (1): 481-497. http://www.onacademic.com/detail/journal_1000034096220710_62b3.html
    Imran J, Harff P, Parker G. 2001. A numerical model of submarine debris flow with graphical user interface[J]. Computers and Geosciences, 27 (6): 717-729. doi: 10.1016/S0098-3004(00)00124-2
    Kvalstad T J, Andresen L, Forsberg C, et al. 2005. The Storegga Slide: Evaluation of triggering sources and slide mechanics[J]. Marine and Petroleum Geology, 22 (1): 245-256.
    Lai X H, Ye Y C, Xie Q C. 2000. A study of the distribution and mechanism of subaqueous landslides in the tidal channel region of the northern inshore, Zhejiang[J]. Marine Geology & Quaternary Geology, 20 (2): 45-50. http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYDZ200002009.htm
    Li C Y, Zhang W, Wu F D, et al. 2018. Run-out process simulation of submarine landslide using material point method[J]. Journal of Engineering Geology, 26 (S1): 114-119.
    Liu D, Cui Y, Guo J, et al. 2020. Investigating the effects of clay/sand content on depositional mechanisms of submarine debris flows through physical and numerical modeling[J]. Landslides 17 (8): 1863-1880. doi: 10.1007/s10346-020-01387-6
    Liu J, Tian J, Yi P. 2015. Impact forces of submarine landslides on offshore pipelines[J]. Ocean Engineering, 95 : 116-127. doi: 10.1016/j.oceaneng.2014.12.003
    Ma J, Wang D, Randolph M F. 2014. A new contact algorithm in the material point method for geotechnical simulations[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 38 (11): 1197-1210. doi: 10.1002/nag.2266
    Mohrig D, Ellis C, Parker G, et al. 1998. Hydroplaning of subaqueous debris flows[J]. Geological Society of America Bulletin, 110 (3): 387-394. doi: 10.1130/0016-7606(1998)110<0387:HOSDF>2.3.CO;2
    Newman J N. 1977. Marine hydrodynamics[M]. Cambridge, Masschusset: MIT Press.
    Nguyen V P, de Vaucorbeil A, Nguyen C T, et al. 2020. A generalized particle in cell method for explicit solid dynamics[J]. Computer Methods in Applied Mechanics and Engineering, 371: 113308. doi: 10.1016/j.cma.2020.113308
    Nodine M C, Wright S G, Gilbert R B, et al. 2006. Mudslides during hurricane Ivan and an assessment of the potential for future mudslides in the Gulf of Mexico[R]. Phase I Project Report prepared for the Minerals Management Service Under the MMS/OTRC Cooperative Research Agreement 1345-01-04-CA, Task Order 39239, MMS Project Number 552.
    Soga K, Alonso E, Yerro A, et al. 2016. Trends in large-deformation analysis of landslide mass movements with particular emphasis on the material point method[J]. Géotechnique, 66 (3): 1-26.
    Sun Z, Gan Y, Huang Z, et al. 2020. A local grid refinement scheme for B-spline material point method[J]. International Journal for Numerical Methods in Engineering, 373: 113503.
    Wang L Z, Miao C Z. 2008. Pressure on submarine pipelines under slowly sliding mud flows[J]. Chinese Journal of Geotechnical Engineering, 30 (7): 982-987. http://www.cnki.com.cn/Article/CJFDTotal-YTGC200807008.htm
    Wang L, Wu S G, Ling Q P, et al. 2016. Submarine slides and influencing factors in the continental shelf break area of the Pearl River Mouth Basin[J]. Marine Sciences, 40 (5): 131-141. http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYKX201605018.htm
    Wang Z T, Zhang Y, Yang Q, et al. 2019. Numerical analysis for impact of submarine landslides on pipelines[J]. Chinese Journal of Geotechnical Engineering, 41 (3): 567-573. http://www.sciencedirect.com/science/article/pii/S0141118718307557
    Xie Q H, Xiu Z X, Liu L J, et al. 2016. Back calculation of submarine landslide identified in the northwest coast of Sumatra[J]. Engineering Mechanics, 33 (12): 241-256. http://en.cnki.com.cn/Article_en/CJFDTOTAL-GCLX201612029.htm
    Xiu Z X, Liu L J, Li X S, et al. 2016. Slope stability analysis of submarine canyon area along pipeline route of Liwan3-1 gasfield[J]. Journal of Engineering Geology, 24 (4): 535-541. http://en.cnki.com.cn/Article_en/CJFDTOTAL-GCDZ201604008.htm
    Yerro A, Alonso E E, Pinyol N M. 2016. Run-out of landslides in brittle soils[J]. Computers and Geotechnics, 80 : 427-439. doi: 10.1016/j.compgeo.2016.03.001
    Yu B. 2007. Experimental study of the velocity of subaqueous non-hydroplaning debris flows[J]. Advances in Water Science, 18 (5): 641-647. http://en.cnki.com.cn/Article_en/CJFDTOTAL-SKXJ200705001.htm
    Yuan W, Wang H, Zhang W, et al. 2021. Particle finite element method implementation for large deformation analysis using Abaqus[J]. Acta Geotechnica, 12 : 1-14. doi: 10.1007/s11440-020-01124-2
    Zakeri A. 2009. Submarine debris flow impact on suspended(free-span) pipelines: Normal and longitudinal drag forces[J]. Ocean Engineering, 36(6-7): 489-499. doi: 10.1016/j.oceaneng.2009.01.018
    Zhu C Q, Jia Y G, Zhang M S, et al. 2016. Surface sediment strength in bed-slope of northern South China Sea[J]. Journal of Engineering Geology, 24 (5): 863-870. http://www.researchgate.net/publication/309740477_Surface_sediment_strength_in_bed-slope_of_northern_South_China_Sea
    范宁, 年廷凯, 焦厚滨, 等. 2019. 双椭流线型海底管线抵御滑坡冲击的减灾效果与降阻机制[J]. 岩土力学, 40 (1): 413-420. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201901044.htm
    范宁, 年廷凯, 赵维, 等. 2018. 海底泥流的流变试验及强度模型[J]. 岩土力学, 39 (9): 3195-3202. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201809012.htm
    冯斌, 孙宏磊, 蔡袁强, 等. 2019. 海底滑坡对海洋单桩冲击力试验研究[J]. 海洋工程, 37 (6): 114-121. https://www.cnki.com.cn/Article/CJFDTOTAL-HYGC201906012.htm
    霍沿东, 年廷凯, 焦厚滨, 等. 2019. 基于极限分析上限方法的海底斜坡地震稳定性[J]. 工程地质学报, 27 (2): 408-414. doi: 10.13544/j.cnki.jeg.2017-621
    解秋红, 修宗祥, 刘乐军, 等. 2016. 苏门答腊岛西北海域大型海底滑坡过程反分析[J]. 工程力学, 33 (12): 241-256. doi: 10.6052/j.issn.1000-4750.2015.05.0376
    来向华, 叶银灿, 谢钦春. 2000. 浙北近海潮汐通道地区水下滑坡分布及成因机制研究[J]. 海洋地质与第四纪地质, 20 (2): 45-50. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200002009.htm
    厉成阳, 张巍, 吴方东, 等. 2018. 海底滑坡运动全过程的物质点法模拟[J]. 工程地质学报, 26 (S1): 114-119. doi: 10.13544/j.cnki.jeg.2018117
    王磊, 吴时国, 李清平, 等. 2016. 珠江口盆地陆架坡折带海底滑坡及其影响因素[J]. 海洋科学, 40 (5): 131-141. https://www.cnki.com.cn/Article/CJFDTOTAL-HYKX201605018.htm
    王立忠, 缪成章. 2008. 慢速滑动泥流对海底管道的作用力研究[J]. 岩土工程学报, 30 (7): 982-987. doi: 10.3321/j.issn:1000-4548.2008.07.006
    王忠涛, 张宇, 杨庆, 等. 2019. 海底滑坡对管线冲击力的数值分析[J]. 岩土工程学报, 41 (3): 567-573. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201903024.htm
    修宗祥, 刘乐军, 李西双, 等. 2016. 荔湾3-1气田管线路由海底峡谷段斜坡稳定性分析[J]. 工程地质学报, 24 (4): 535-541. doi: 10.13544/j.cnki.jeg.2016.04.007
    余斌. 2007. 无水滑的水下泥石流运动速度的实验研究[J]. 水科学进展, 18 (5): 641-647. https://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ200705001.htm
    朱超祁, 贾永刚, 张民生, 等. 2016. 南海北部陆坡表层沉积物强度特征研究[J]. 工程地质学报, 24 (5): 863-870. doi: 10.13544/j.cnki.jeg.2016.05.016
  • 加载中
图(9)
计量
  • 文章访问数:  186
  • HTML全文浏览量:  34
  • PDF下载量:  67
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-16
  • 修回日期:  2021-09-23
  • 刊出日期:  2021-12-25

目录

    /

    返回文章
    返回