西部侏罗系矿区充水含水层水文地球化学特征及矿井水来源综合识别

王强民 王皓 杨建 张溪彧 董兴玲

王强民, 王皓, 杨建, 等. 2021. 西部侏罗系矿区充水含水层水文地球化学特征及矿井水来源综合识别[J]. 工程地质学报, 29(4): 1084-1093. doi: 10.13544/j.cnki.jeg.2021-0367
引用本文: 王强民, 王皓, 杨建, 等. 2021. 西部侏罗系矿区充水含水层水文地球化学特征及矿井水来源综合识别[J]. 工程地质学报, 29(4): 1084-1093. doi: 10.13544/j.cnki.jeg.2021-0367
Wang Qiangmin, Wang Hao, Yang Jian, et al. 2021. Hydrogeochemical characteristics of main water filled aquifers and source indicators of mine water in typical Jurassic mine area of western China[J]. Journal of Engineering Geology, 29(4): 1084-1093. doi: 10.13544/j.cnki.jeg.2021-0367
Citation: Wang Qiangmin, Wang Hao, Yang Jian, et al. 2021. Hydrogeochemical characteristics of main water filled aquifers and source indicators of mine water in typical Jurassic mine area of western China[J]. Journal of Engineering Geology, 29(4): 1084-1093. doi: 10.13544/j.cnki.jeg.2021-0367

西部侏罗系矿区充水含水层水文地球化学特征及矿井水来源综合识别

doi: 10.13544/j.cnki.jeg.2021-0367
基金项目: 

国家重点研发计划 2017YFC0804100

国家自然科学基金 42007179

陕西省自然科学基础研究计划 2019JQ-009

陕西省自然科学基础研究计划 2021JQ-948

详细信息
    作者简介:

    王强民(1989-),男,博士,助理研究员,主要从事煤矿水害防治与矿区生态环境保护方面的研究工作. E-mail: wangqiangmin@cctegxian.com

    通讯作者:

    杨建(1979-),男,博士,研究员,主要从事煤矿水害防治与矿区水资源保护方面的研究工作. E-mail: yangjian@cctegxian.com

  • 中图分类号: TD745

HYDROGEOCHEMICAL CHARACTERISTICS OF MAIN WATER FILLED AQUIFERS AND SOURCE INDICATORS OF MINE WATER IN TYPICAL JURASSIC MINE AREA OF WESTERN CHINA

Funds: 

the Chinese 13th Five-Year Key Research and Development Program 2017YFC0804100

National Natural Science Foundation of China 42007179

Natural Science Basic Research Plan in Shaanxi Province of China 2019JQ-009

Natural Science Basic Research Plan in Shaanxi Province of China 2021JQ-948

  • 摘要: 本文以水文地球化学理论为指导,基于研究区水文地质条件及矿山水害研究基础,构建了不同充水含水层水化学和氢、氧同位素基础特征值,结合不同煤层埋深煤矿含隔水层组合特征和导水裂隙带发育高度,综合识别了浅埋、中深埋和深埋多个煤矿的矿井水来源。研究结果显示,受水岩作用和水动力条件等因素影响,煤层上覆不同充水含水层地下水水化学类型和氢、氧同位素值差异明显;随着煤层埋深的增大,矿井水的矿化度呈显著增加趋势,氢、氧同位素整体呈减小趋势;在此基础上,综合采用水化学和环境同位素的方法对研究区不同煤层埋深煤矿的矿井涌水进行识别,认为浅埋煤矿矿井水为第四系松散含水层地下水和侏罗系砂岩含水层地下水的混合水,深埋和中深埋煤矿矿井水主要为侏罗系砂岩含水层地下水。
  • 图  1  研究区示意图

    Figure  1.  Schematic map of the study area

    图  2  不同充水含水层地下水化学成分Piper三线图

    Figure  2.  Piper diagram depicting the main water type for groundwater samples of main water filled aquifers

    图  3  不同充水含水层地下水化学成分聚类树状图和Stiff图

    Figure  3.  Dendogram of the clusters and Stiff diagrams for groundwater samples of main water filled aquifers

    图  4  不同充水含水层地下水Gibbs图及(SO42-+HCO3-)与(Ca2++Mg2+)散点图

    Figure  4.  Gibbs diagram and scatter diagram of (SO42-+HCO3-) and (Ca2++Mg2+)for groundwater samples of main water filled aquifers

    图  5  不同充水含水层地下水δD与δ18 O关系图

    Figure  5.  Relationship of δD and δ18O for groundwater samples of main water filled aquifers

    图  6  不同煤矿矿井水样品的矿化度特征

    Figure  6.  Mineralization characteristics of different mine water samples

    图  7  不同煤矿矿井水化学成分Piper三线图和Stiff图

    Figure  7.  Piper diagram and Stiff diagrams of different mine water samples

    图  8  不同煤矿矿井水δD与δ18 O关系图

    Figure  8.  The relationship of δD and δ18 O of different mine water samples

    图  9  不同煤矿含隔水层组合及导水裂隙带发育特征

    Figure  9.  Hydrogeological structures and heights of water conducting fracture zone for different coal mines

    表  1  研究区不同煤矿矿井水水文地球化学基础数据

    Table  1.   Basic hydrogeochemical data for different mine water samples

    类型 矿井水样点编号 Ca2+/mg·L-1 Mg2+/mg·L-1 K++Na+/mg·L-1 HCO3-/mg·L-1 SO42-/mg·L-1 Cl-/mg·L-1 TDS/mg·L-1 pH δ18O/‰ δD/‰
    深埋(>400 m) SM1 411.0 54.7 660.0 317.0 2161.0 43.0 3684.0 7.8 -10.9 -84.7
    SM2 140.0 26.7 639.9 281.0 1330.0 84.0 2476.0 8.0 -10.8 -84.8
    SM3 56.1 9.7 602.3 391.0 917.0 88.0 1824.0 8.2 -11.1 -85.2
    中深埋(200~400 m) ZSM1 24.0 10.9 564.5 793.0 370.0 145.0 1532.0 8.4 -10.8 -81.2
    ZSM2 22.0 13.4 352.3 647.0 216.0 41.0 960.0 8.3 -10.8 -81.9
    ZSM3 34.1 9.7 297.2 580.0 183.0 39.0 880.0 8.1 -10.8 -81.5
    浅埋(< 200 m) QM1 34.1 9.7 257.0 512.5 173.0 40.5 820.0 8.2 -9.8 -74.0
    QM2 84.2 52.3 59.5 506.0 130.0 16.0 608.0 7.8 -9.6 -71.9
    QM3 46.1 12.2 25.7 207.0 33.6 8.0 276.0 8.1 -9.9 -72.6
    下载: 导出CSV

    表  2  研究区不同煤矿矿井水的水源组成特征

    Table  2.   The water source composition for different mine water samples

    类型 矿井水样点编号 矿井水δD/‰ 浅层地下水δD/‰ 深层地下水δD/‰ 浅层地下水混合比例/% 深层地下水混合比例/% 浅层地下水位
    深埋(>400 m) SM1 -84.7 -75.3 -86.0 12.15 87.85 下降不明显
    SM2 -84.8 -75.3 -86.0 11.21 88.79
    SM3 -85.2 -75.3 -86.0 7.48 92.52
    中深埋(200~400 m) ZSM1 -81.2 -63.0 -83.3 10.34 89.66 下降不明显
    ZSM2 -81.9 -63.0 -83.3 6.90 93.10
    ZSM3 -81.5 -63.0 -83.3 8.87 91.13
    浅埋(< 200 m) QM1 -74.0 -63.0 -83.3 45.81 54.19 下降幅度大
    QM2 -71.9 -63.0 -80.0 47.65 52.35
    QM3 -72.6 -63.0 -80.0 43.53 56.47
    下载: 导出CSV
  • Dai G L, Xue X Y, Niu C. 2017. Discrimination of water inrush source in Xiangshan coal mine based on chemical characteristics of groundwater[J]. Journal of Xi'an University of Science and Technology, 37 (2): 213-218. http://en.cnki.com.cn/Article_en/CJFDTotal-XKXB201702012.htm
    Dong D L, Li X, Lin G, et al. 2019. Identification model of the independence right-fuzzy variable theory of water inrush source[J]. Coal Geology & Exploration, 47 (5): 48-53. http://en.cnki.com.cn/Article_en/CJFDTotal-MDKT201905007.htm
    Fan L M, Sun K, Li C, et al. 2020. Background, thought and method of groundwater monitoring in large coal base of northwest China[J]. Journal of China Coal Society, 45 (1): 317-329.
    Fan L M, Xiang M X, Peng J, et al. 2016. Groundwater response to intensive mining in ecologically fragile area[J]. Journal of China Coal Society, 41 (11): 2672-2678. http://d.wanfangdata.com.cn/Periodical/mtxb201611003
    Gibbs R J. 1970. Mechanisms controlling world water chemistry[J]. Science, 170(3962): 1088-1090. doi: 10.1126/science.170.3962.1088
    Guo C, Qin Y, Xia Y C, et al. 2017. Source discrimination of produced water from CBM commingling wells based on the hydrogen and oxygen isotopes: a case syudy of the Upper Permian, Bide-Santang Basin, western Guizhou area[J]. Acta Petrolei Sinica, 38 (5): 493-501. http://www.cqvip.com/QK/95667X/201705/672175606.html
    Huang P H, Chen J S. 2011. Fisher indentify and mixing model based on multivariate statistical analysis of mine water inrush sources[J]. Journal of China Coal Society, 36 (S1): 131-136. http://www.cqvip.com/QK/96550X/2011S1/1003569877.html
    Hou G C, Su X S, Lin X Y, et al. 2007. Environmental isotopic composition of natural water in Ordos cretaceous groundwater basin and its significance for hydrological cycle[J]. Journal of Jilin University(Earth Science Edition), 37 (2): 293-299. http://d.wanfangdata.com.cn/Periodical/cckjdxxb200702010
    Hu W Y. 2016. Water inflows prediction technique of water inflow from roof aquifer during extraction of shallow seam[J]. Coal Geology & Exploration, 44 (5): 91-96. http://d.wanfangdata.com.cn/Periodical/mtdzykt201605017
    Jiao Y J, Wang G C, Fan Y Y, et al. 2014. Distinguishing water sources of the abandoned mine in Fengfeng mining area by using hydrochemistry and hydogen, oxygen isotopes[J]. Quaternary Sciences, 34 (5): 1054-1061. http://d.wanfangdata.com.cn/Periodical/dsjyj201405014
    Li Z B, Huang T M, Pang Z H, et al. 2019. Study on groundwater baseline quality, monitoring indicators and contamination tracing methods related to shale gas development: A case study in the Fuling gasfield in SW China[J]. Journal of Engineering Geology, 27 (1): 170-177. http://en.cnki.com.cn/Article_en/CJFDTotal-GCDZ201901018.htm
    Li Z X, Li M P, Shen X L, et al. 2018. Genetic analysis of the bedrock top surface soil layer deletion and its significance for water prevention in Yushen mining area[J]. Coal Geology & Exploration, 46 (6): 102-107. http://en.cnki.com.cn/Article_en/CJFDTotal-MDKT201806014.htm
    Liang X Y, Fang G, Huang H. 2020. Research on hydrogeochemical characteristics of Caojiatan coal field in Yushen mining area[J]. Journal of Arid Land Resources and Environment, 34 (5): 102-108. doi: 10.1007/s12665-020-08942-3
    Liao X Jiang H, Xu Z X, et al. 2020. Hydrogeochemical characteristics and genesis mechanism of geothermal water in Awang, Eastern Tibet[J]. Journal of Engineering Geology, 28 (4): 916-924.
    Liu J, Yang J, Wang Q M, et al. 2018. Study on water quality status and hydrochemical characteristics of shallow aquifer in mining area of Yulin City[J]. Coal Science and Technology, 46 (12): 61-66. http://en.cnki.com.cn/Article_en/CJFDTotal-MTKJ201812010.htm
    Piña A, Donado L D, Blake S, et al. 2018. Compositional multivariate statistical analysis of the hydrogeochemical processes in a fractured massif: La Línea tunnel project, Colombia[J]. Appl Geochem, 95 : 1-18. doi: 10.1016/j.apgeochem.2018.05.012
    Shi L Q, Wang X L, Qiu M, et al. 2020. Recognition of limestone water inrush source by Fisher method of trace elements[J]. China Sciencepaper, 15 (5): 491-496.
    Sui W H, Liu J W, Gao B L, et al. 2019. A review on disaster mechanism of quicksand with a high potential energy due to mining and its prevention and control[J]. Journal of China Coal Society, 44 (8): 2419-2426. http://en.cnki.com.cn/Article_en/CJFDTotal-MTXB201908017.htm
    Sui W H, Wang D D, Sun Y J, et al. 2019. Mine hydrogeological structure and its responses to mining[J]. Journal of Engineering Geology, 27 (1): 21-28. http://en.cnki.com.cn/Article_en/CJFDTotal-GCDZ201901003.htm
    Shen T, Ma X D, Dai G F. 2011. Source discrimination of mine water from shallow buried coal seams mining[J]. Coal Geology of China, 23 (10): 35-38. http://d.wanfangdata.com.cn/Periodical/zgmtdz201110008
    Sun Y J, Chen G, Xu Z M, et al. 2020. Research progress of water environment, treatment and utilization in coal mining areas of China[J]. Journal of China Coal Society, 45 (1): 304-316. http://www.researchgate.net/publication/340077060_Research_progress_of_water_environment_treatment_and_utilization_in_coal_mining_areas_of_China
    Sun Y J, Cui S Y, Xu Z M, et al. 2017. Characteristics of groundwater circulation condition and complementary diameter in typical Jurassic coal-rich area of western China[J]. Journal of China Coal Society, 42 (2): 293-299. http://en.cnki.com.cn/Article_en/CJFDTOTAL-MTXB201702004.htm
    Wang Q M, Dong S N, Wang H, et al. 2020. Hydrogeochemical processes and groundwater quality assessment for different aquifers in the Caojiatan coal mine of Ordos Basin, northwestern China[J]. Environmental Earth Sciences, 79(9): 199. doi: 10.1007/s12665-020-08942-3
    Wang S Y, He X B, Ding Y J, et al. 2020. Characteristics and influencing factors of stable hydrogen and oxygen isotopes in groundwater in the permafrost region of the source region of the Yangtze River[J]. Environmental Science, 41 (1): 166-172.
    Wang W K, Wang Y L, Duan L, et al. 2006. The groundwater environmental evolution and renewable maintain way in the Guanzhong Basin[M]. Beijing: The Yellow River Water Conservancy Press.
    Wang Y, Zhou M R, Yan P C, et al. 2017. Identification of coal mine water inrush source with PCA-BP model based on laser-induced fluorescence technology[J]. Spectroscopy and Spectral Analysis, 37 (3): 978-983. http://d.wanfangdata.com.cn/Periodical/gpxygpfx201703055
    Xue J K, Wang H, Zhao C H, et al. 2020. Prediction of the height of water-conducting fracture zone and water-filling model of roof aquifer in Jurassic coalfield in Ordos Basin[J]. Journal of Mining & Safety Engineering, 37 (6): 1222-1230.
    Yang J, Liu J, Jin D W, et al. 2018. Method of determining mine water inrush source based on combination of organicinorganic water chemistry[J]. Journal of China Coal Society, 43 (10): 2886-2894. http://www.zhangqiaokeyan.com/academic-journal-cn_journal-china-coal-society_thesis/0201270785756.html
    Yang J, Liu J, Huang H, et al. 2019. Key groundwater control factors of deep buried coalfield by landform and sedimentation in the Northern Ordos Basin[J]. Advances in Earth Science, 34 (5): 523-530. http://en.cnki.com.cn/Article_en/CJFDTotal-DXJZ201905010.htm
    Zhang J M, Li Q S, Nan Q A, et al. 2017. Study on the bionic coal & water co-mining idea and key technological system in the ecological fragile region of west China[J]. Journal of China Coal Society, 42 (1): 66-72. http://www.mtxb.com.cn/EN/Y2017/V42/I01/66
    Zhu B, Yang X, Rioual P, et al. 2011. Hydrogeochemistry of three watersheds(the Erlqis, Zhungarer and Yili) in northern Xinjiang, NW China[J]. Appl Geochem, 26 (8): 1535-1548. doi: 10.1016/j.apgeochem.2011.06.018
    代革联, 薛小渊, 牛超. 2017. 基于水化学特征分析的象山矿井突水水源判别[J]. 西安科技大学学报, 37 (2): 213-218. https://www.cnki.com.cn/Article/CJFDTOTAL-XKXB201702012.htm
    董东林, 李祥, 林刚, 等. 2019. 突水水源的独立性权-模糊可变理论识别模型[J]. 煤田地质与勘探, 47 (5): 48-53. doi: 10.3969/j.issn.1001-1986.2019.05.007
    范立民, 孙魁, 李成, 等. 2020. 西北大型煤炭基地地下水监测背景、思路及方法[J]. 煤炭学报, 45 (1): 317-329. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202001032.htm
    范立民, 向茂西, 彭捷, 等. 2016. 西部生态脆弱矿区地下水对高强度采煤的响应[J]. 煤炭学报, 41 (11): 2672-2678. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201611003.htm
    郭晨, 秦勇, 夏玉成, 等. 2017. 基于氢、氧同位素的煤层气合排井产出水源判识-以黔西地区比德-三塘盆地上二叠统为例[J]. 石油学报, 38 (5): 493-501. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201705002.htm
    黄平华, 陈建生. 2011. 基于多元统计分析的矿井突水水源Fisher识别及混合模型[J]. 煤炭学报, 36 (S1): 131-136. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2011S1027.htm
    侯光才, 苏小四, 林学钰, 等. 2007. 鄂尔多斯白垩系地下水盆地天然水体环境同位素组成及其水循环意义[J]. 吉林大学学报(地球科学版), 37 (2): 255-260. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200702008.htm
    虎维岳. 2016. 浅埋煤层回采中顶板含水层涌水量的时空动态预测技术[J]. 煤田地质与勘探, 44 (5): 91-96. doi: 10.3969/j.issn.1001-1986.2016.05.017
    焦艳军, 王广才, 范有余, 等. 2014. 基于氢氧同位素和水化学的废弃煤矿充水水源识别[J]. 第四纪研究, 34 (5): 1054-1061. https://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ201405014.htm
    利振彬, 黄天明, 庞忠和, 等. 2019. 页岩气开发的地下水环境背景值、监测指标及污染示踪方法研究——以焦石坝区块为例[J]. 工程地质学报, 27 (1): 170-177. doi: 10.13544/j.cnki.jeg.2019-056
    李智学, 李明培, 申小龙, 等. 2018. 榆神矿区基岩顶面土层缺失机理分析及其防治水意义[J]. 煤田地质与勘探, 46 (6): 102-107. doi: 10.3969/j.issn.1001-1986.2018.06.014
    梁向阳, 方刚, 黄浩. 2020. 榆神矿区曹家滩井田水文地球化学特征研究[J]. 干旱区资源与环境, 34 (5): 102-108. https://www.cnki.com.cn/Article/CJFDTOTAL-GHZH202005015.htm
    廖昕, 蒋翰, 徐正宣, 等. 2020. 西藏东部阿旺地下热水化学特征及其成因初探[J]. 工程地质学报, 28 (4): 916-924. doi: 10.13544/j.cnki.jeg.2019-573
    刘基, 杨建, 王强民, 等. 2018. 榆林市矿区浅层含水层水质现状及水化学特征研究[J]. 煤炭科学技术, 46 (12): 61-66. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201812010.htm
    施龙青, 王晓丽, 邱梅, 等. 2020. 利用微量元素Fisher法识别灰岩突水水源[J]. 中国科技论文, 15 (5): 491-496. doi: 10.3969/j.issn.2095-2783.2020.05.001
    隋旺华, 刘佳维, 高炳伦, 等. 2019a. 采掘诱发高势能溃砂灾变机理与防控研究与展望[J]. 煤炭学报, 44 (8): 2419-2426. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201908017.htm
    隋旺华, 王丹丹, 孙亚军, 等. 2019b. 矿山水文地质结构及其采动响应[J]. 工程地质学报, 27 (1): 21-28. doi: 10.13544/j.cnki.jeg.2019-072
    申涛, 马雄德, 戴国锋. 2011. 浅埋煤层开采的矿井水来源判别[J]. 中国煤炭地质, 23 (10): 35-38. doi: 10.3969/j.issn.1674-1803.2011.10.08
    孙亚军, 陈歌, 徐智敏, 等. 2020. 我国煤矿区水环境现状及矿井水处理利用研究进展[J]. 煤炭学报, 45 (1): 304-316. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202001031.htm
    孙亚军, 崔思源, 徐智敏, 等. 2017. 西部典型侏罗系富煤区地下水补径排的同位素特征[J]. 煤炭学报, 42 (2): 293-299. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201702004.htm
    汪少勇, 何晓波, 丁永建, 等. 2020. 长江源多年冻土区地下水氢氧稳定同位素特征及其影响因素[J]. 环境科学, 41 (1): 166-172. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202001020.htm
    王文科, 王雁林, 段磊, 等. 2006. 关中盆地地下水环境演化与可再生维持途径[M]. 北京: 黄河水利出版社.
    薛建坤, 王皓, 赵春虎, 等. 2020. 鄂尔多斯盆地侏罗系煤田导水裂隙带高度预测及顶板充水模式[J]. 采矿与安全工程学报, 37 (6): 1222-1230. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL202006018.htm
    杨建, 刘基, 黄浩, 等. 2019. 鄂尔多斯盆地北部深埋煤矿"地貌-沉积"控水关键要素研究[J]. 地球科学进展, 34 (5): 523-530. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201905010.htm
    杨建, 刘基, 靳德武, 等. 2018. 有机-无机联合矿井突水水源判别方法[J]. 煤炭学报, 43 (10): 2886-2894. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201810028.htm
    张建民, 李全生, 南清安, 等. 2017. 西部生态脆弱区现代煤-水仿生共采理念与关键技术[J]. 煤炭学报, 42 (1): 66-72. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201701009.htm
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  85
  • HTML全文浏览量:  62
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-25
  • 修回日期:  2021-08-07
  • 网络出版日期:  2021-09-03
  • 刊出日期:  2021-09-03

目录

    /

    返回文章
    返回