APPLICABILITY ANALYSIS OF DOUBLE STEEL SHEET PILE UNDER SPECIAL GEOLOGICAL CONDITIONS IN COASTAL ZONE
-
摘要: 双排钢板桩结构是由两排钢板桩、桩间土和拉杆组成的挡土、止水复合结构,由于其较土石围堤占地面积小、施工速度快,较钢板桩整体性好,抗地震和波浪等动力稳定性好,在水利、水运、海岸工程中广泛应用。但由于钢板桩受地质条件影响较大,其使用效果和投入成本不尽相同。本文重点搜集和调查了国内外海岸带工程中使用双排钢板桩的工程案例,分别针对岩溶发育的岩性地基,高渗透性的砂性地基和深厚淤泥质软土地基对双排钢板桩的性能影响和设计约束进行分析。结合原有地质条件和设计资料,采用有限元软件补充计算分析,分析研究在各种不同类型的工程地质条件和水文条件下双排钢板桩的应用效果,总结双排钢板桩在海岸带不同工程地质条件下的适用性。发现在岩溶发育地层施工双排钢板桩需要防止打桩造成垂直度差和岩溶连通性带来的渗漏问题;在砂土地层需要防止钢板桩倾斜变形造成锁扣止水性能劣化,进而导致渗漏水甚至出现流砂;在淤泥地层施工时打入桩施工和桩身止水性能都能得到保证,但可能发生较大桩身整体变形,同时应考虑内侧坑底加固以避免踢脚稳定性破坏。本文的研究对发展海岸带生态工程地质和沿海韧性水工建筑物具有工程指导价值。Abstract: The double-row steel sheet pile structure(DSSPS) is a soil-retaining and water-stopping composite structure. It composes of two rows of steel sheet piles, soil between the piles and tie rods. Compared with earth-rock dikes, it has a smaller footprint, faster construction speed, better integrity than steel sheet piles, and good dynamic stability against earthquakes and waves. It is widely used in water conservancy, water transportation, and coastal engineering. However, because DSSPS is greatly affected by geological conditions, its application effects and costs are not the same. This article focuses on collecting and investigating the use of double-row steel sheet piles in coastal projects at home and abroad. The effects of double-row steel sheet piles on karst-developed lithological foundations, high-permeability sand foundations and deep silt soft soil foundations have been investigated. Performance impact and design constraints are analyzed. Combined with the original geological conditions and design data, the finite element software is used to supplement the calculation and analysis. The application effects of the double-row steel sheet piles under various types of engineering geological and hydrological conditions are analyzed. The different projects of the double-row steel sheet piles in the coastal zone are summarized. It is found that the construction of double-row steel sheet piles in karst developed stratum needs to prevent leakage problems caused by poor verticality and karst connectivity caused by pile driving. In the sandy soil layer, it is necessary to prevent the inclination and deformation of the steel sheet piles from deteriorating the water-stop performance of the lock, which in turn leads to water leakage and even quicksand. During the construction of silt formations, the construction of the driven pile and the water-stopping performance of the pile body can be guaranteed, but a large overall deformation of the pile body may occur. At the same time, the inner pit bottom reinforcement should be considered to avoid the stability of the kicking foot. The findings of this article has engineering guidance value for the development of coastal ecological engineering geology and coastal resilient hydraulic structures.
-
Key words:
- Coastal geological condition /
- Coastal zone /
- Steel sheet pile /
- Case study
-
表 1 大连造船新厂30万吨船坞围堰工程地质条件
Table 1. Engineering geological conditions of cofferdam for 300000 DWT/200000 DWT dock of Dalian New Shipyard
序号 土层名称 层厚/m 重度/kN·m-3 C/kPa Φ/(°) 饱和抗压强度/MPa 标贯击数N63.5 1 淤泥 6 16.0 2 淤泥质亚黏土 2~5 17.9 0 21.3 3 亚黏土 2~6 19.4 4.0 24.0 4 黏土层 岩面低洼处 19.4 20.0 21.0 5 砾砂层 透镜体 11 6 石灰岩或辉缘岩 104 7 回填砂 20.0 0 35.0 8 回填石屑 20.0 0 35.0 9 回填石渣 18.0 0 35.0 表 2 大连造船新厂30万吨/20万吨船坞围堰工程水文条件
Table 2. Engineering hydrologic conditions of cofferdam for 300000 DWT/200000 DWT dock of Dalian New Shipyard
最高潮平均潮位/m +4.37 波高H1%/m 3.20 最低潮平均潮位/m -0.28 波长L/m 48.00 表 3 工程地质条件
Table 3. Engineering geological conditions of cofferdam for Singapore Shipyard
序号 土层名称 层厚/m 标贯/(击/30cm) 计算参数 重度/kN·m-3 C/kPa Φ/(°) 弹性模量/MPa 泊松比 1 吹填中粗砂 0~30 19.0 0 30 10 0.3 2 松散砂 4~6 4~6 19.0 0 35 10.2 0.3 3 细砂,中粗砂 1~25 12 19.0 0 32 20.4 0.3 4 黏土 2~6 19.0 17.0 18.0 20 0.3 5 硬黏土 4~6 22~50 19.0 10 25.0 85 0.3 6 粉土 4~6 81 19.0 5.0 30 138 0.3 7 砂质粉土 2 90 19.0 5.0 35 153 0.3 8 回填砂 18.0 0 30 表 4 工程水文条件
Table 4. Hydraulic conditions of Singapore Shipyard
序号 水文条件 单位/m 1 极端高水位 +3.20 2 极端低水位 0 3 计算波高Hmax 2.34 4 计算波长L 25.87 表 5 工程材料参数及标准
Table 5. Engineering material parameters and standards
构件 型号 材料 屈服强度/N·mm-2 标准 钢板桩 海侧 AU23 S355GP 355 BS EN 10248 陆侧 OT25 S355JOC 355 BS EN 10249 拉杆 圆钢直径60 Q460C 400 GB/T 1591 围堰 双拼槽钢250×90×9 S275JR 275 EN 10025 表 6 钢板桩设计计算参数
Table 6. Calculation parameters of steel sheet piles
序号 型号 EA/kN·m-1 EI/kN·m2·m-1 W/kN·m-1·m-1 1 AU23 3.547×106 1.039×105 1.360 2 OT25 4.507×106 1.245×105 1.726 表 7 拉杆设计计算参数
Table 7. Calculation parameters of tie rod
名称 EA/kN 间距/m 圆钢拉杆Φ60 5.793×105 1.50 表 8 长兴工程潮位特征表
Table 8. Tidal level characteristics of Changxing Shipyard
最高潮位/m 最低潮位/m 最大潮差/m 最小潮差/m 平均潮差/m 平均海平面/m 平均半潮面/m 平均高潮位/m 平均低潮位/m 平均涨潮历时 平均落潮历时 5.88
(1997.8.1)-0.29
(1969.4.5)4.46
(1971.8.10)0.10
(1970.9.24)2.47 2.02 2.07 3.30 0.84 4 h 54 min 7 h 31 min 表中潮位基面和地形基面均为吴淞基面,长兴站吴淞基面比理论最低潮面高0.09m 表 9 50年一遇风速和50年一遇高潮位的波浪设计要素
Table 9. Wave design elements of 50 year return wind speed and 50 year return high water level
方向 风速/m·s-1 平均水深D/m 计算水深d/m 平均波高H/m H1%/m H5%/m 平均周期T/s 平均波长L/m SSE 26.0 6.25 12.04 1.70 3.83 3.15 5.8 52.5 SSW 23.7 9.00 14.79 0.84 1.96 1.60 4.1 26.2 WNW 20.9 4.90 10.69 1.23 2.83 2.31 4.9 37.4 WNW 20.9 7.50 13.29 1.30 2.98 2.44 5.1 40.6 -
Chen G Z. 2014. Application of static pressure pile planting machine in embankment reconstruction project[J]. Municipal Engineering Technology, 32(3): 5. Fujiwara K, Taenaka S, Otsushi K, et al. 2017. Study on levee reinforcement using double sheet-piles with partition walls[J]. Japanese Geotechnical Society Special Publication, 5 (2): 11-15. doi: 10.3208/jgssp.v05.003 Furuichi H, Hara T, Tani M, et al. 2015. Study on reinforcement method of dykes by steel sheet-pile against earthquake and tsunami disasters[J]. Soil Engineering Journal, 10 (4): 583-594. http://www.researchgate.net/publication/288873072_Study_on_Reinforcement_Method_of_Dykes_by_Steel_Sheet-pile_against_Earthquake_and_Tsunami_Disasters Gao J Y, Gu Q Y, Li X J. 2009. Stability analysis of large-span double sheet-piled cofferdam on soft ground[J]. Port & Waterway Engineering, (8): 50-55. http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYGC2009S1011.htm Gong W. 2019. Application of sand-filled membrane bag and double-layer steel pile in large-scale cofferdam construction under marine environment[J]. Railway Construction Technology, (8): 114-118. http://en.cnki.com.cn/Article_en/CJFDTotal-TDJS201908026.htm Guan Z G. 2021. Quality control of steel sheet pile support and light vacuum dewatering in deep foundation pit in coastal fine sand layer[J]. Pearl River Water Transport, (3): 19-20. Han W L, Lin Z. 2009. Several problems needing attention in coating anti-corrosion of steel sheet pile[C]//Proceedings of the 14th China Offshore Engineering Symposium: 1311-1313. Hou Y M, Wang J H, Gu Q Y. 2009. Deformation performance of double steel sheet piles cofferdam[J]. Journal of Shanghai Jiaotong University, 43 (10): 1577-1580, 1584. http://epub.cnki.net/grid2008/docdown/docdownload.aspx?filename=SHJT200910014&dbcode=CJFD&year=2009&dflag=pdfdown Huang X P, Yang S H, Wang X B. 2020. Design of offshore large anchorage island cofferdam for Shenzhen-Zhongshan Link[J]. China Harbour Engineering, 40 (11): 44-48. Jiang J. 2011. Numerical simulation for construction stage of double-wall steel sheet pile cofferdam in dock[J]. Port & Waterway Engineering, 12 : 144-147. http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYGC201112048.htm Kang A Z, Zhu B, Lin P Z. 2020. Experimental and numerical study of wave-current interactions with a dumbbell-shaped bridge cofferdam[J]. Ocean Engineering, 210: 107433. doi: 10.1016/j.oceaneng.2020.107433 Li X J, Gu Q Y. 2009. Key technology of hydraulic structure design in CSSC Changxing shipbuilding base[J]. Port & Waterway Engineering, (8): 43-49. http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYGC2009S1010.htm Liu X L, Zhu C Q, Wang D, et al. 2017. Progress in marine engineering geology: summary of the international symposium on marine engineering geology[J]. Journal of Engineering Geology, 25 (3): 886-891. http://en.cnki.com.cn/Article_en/CJFDTotal-GCDZ201703038.htm Liu Y R, Wang Z Y. 2001. An approach to utilization of steel sheet piles as the main part of hydraulic structures in coastal engineering[J]. Port & Waterway Engineering, (12): 21-23. http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYGC200112005.htm Luo Y, Wang J X, Peng Q, et al. 2021. Deformation characteristics of double-row steel sheet pile cofferdam and open-cut foundation pit in sea area[J]. Journal of Water Resources and Architectural Engineering, 19 (1): 34-38. Ma Y P, Huang H Y, Qian Y Q. 2019. Application of steel sheet pile in one oversea dry dock project based on deep middle-coarse sand soil condition[J]. Building Technique Development, 46 (13): 1-3. http://en.cnki.com.cn/Article_en/CJFDTotal-JZKF201913001.htm Mitobe Y, Adityawan M B, Roh M. 2016. Experimental study on embankment reinforcement by steel sheet pile structure against tsunami overflow[J]. Coastal Engineering Journal, 58(4): 1640018. Shang Y J, Fu B J, Jiang Y, et al. 2013. Re-thinking analysis of large-scale engineering accidents and "eco-geological engineering"[J]. Journal of Engineering Geology, 21 (6): 819-827. http://en.cnki.com.cn/Article_en/CJFDTOTAL-GCDZ201306001.htm The National Standards Compilation Group of People's Republic of China. 2017. Technical code for steel sheet piles of marine structures in shipyard(GB/T 8528-2017)[S]. Beijing: Standards Press of China. The Professional Standards Compilation Group of People's Republic of China. 2015. Code of Hydrology for Harbour and Waterway(JTS145-2015)[S]. Beijing: China Communications Press. Wang H B. 2000. Practice of different construction techniques for docks built on complex limestones[J]. China Harbour Engineering, 6 (3): 1-6. http://en.cnki.com.cn/Article_en/CJFDTOTAL-GKGC200003000.htm Wang L. 2017. General construction technology of steel sheet pile and damage to coating[J]. Port & Waterway Engineering, (8): 107-110. Wu F Q, Lan H X. 2016. International research status and frontiers on engineering geology and the environment—A review on iaeg xii congress[J]. Journal of Engineering Geology, 24 (1): 116-129. http://en.cnki.com.cn/Article_en/CJFDTotal-GCDZ201601020.htm Xiao Z, Song L, Li J H. 2020. Stability of the large cylindrical structures in Hong Kong-Zhuhai-Macao bridge: A case study[J]. Applied Ocean Research, 97: 102092. doi: 10.1016/j.apor.2020.102092 Yang Q Y. 2021. Application of construction technology of steel sheet pile embedded in rock under water[J]. Sichuan Building Materials, 47 (2): 127-128. Yao M Q, Chen X H. 1993. Cofferdam project of 300000 DWT dock in Dalian New Shipyard[J]. Shipbuilding Industry Construction, 2 : 55-62. Ye G L, Xiao D P. 1995. Safety monitoring and analysis of 200000 DWT Dock Cofferdam in Dalian New Shipyard[J]. Port Engineering, 1 : 47-51. You M G. 2009. Background of geological environment and formation conditions of seawater intrusion in Fujian coastal area[J]. Journal of Engineering Geology, 17 (5): 666-668. http://d.wanfangdata.com.cn/periodical/gcdzxb200905014 Zheng J M. 1994. Marine engineering geology research in China[J]. Journal of Engineering Geology, 2 (1): 90-96. http://search.cnki.net/down/default.aspx?filename=GCDZ401.010&dbcode=CJFD&year=1994&dflag=pdfdown Zhou H G. 1991. Anti corrosion treatment of steel sheet pile for longitudinal cofferdam of Gezhouba Project[J]. Yangtze River, 22 (1): 38-40. Zhou Z Q. 2000. Leakage stoppage of foundation pit and foundation treatment of dock at karst area[J]. China Harbour Engineering, 10 (5): 23-26. http://en.cnki.com.cn/Article_en/CJFDTotal-GKGC200005006.htm Zuo Q H, Dou X P. 2014. Zhong guo hai an gong cheng jin zhan[M]. Beijing: China Ocean Press. 陈国主. 2014. 静压植桩机在堤防改建工程中的应用[J]. 市政技术, 32(3): 5. doi: 10.3969/j.issn.1009-7767.2014.03.003 高加云, 顾倩燕, 李小军. 2009. 软土地基大跨度双排钢板桩围堰结构稳定性研究[J]. 水运工程, (8): 50-55. 龚伟. 2019. 充砂膜袋加双层钢板桩在海洋环境下大型围堰施工中的应用[J]. 铁道建筑技术, (8): 114-118. doi: 10.3969/j.issn.1009-4539.2019.08.026 官兆根. 2021. 海边细砂层深基坑钢板桩支护与坑内轻型真空降水质量控制[J]. 珠江水运, (3): 19-20. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJSI202103008.htm 韩文礼, 林竹. 2009. 钢板桩涂层防腐应注意的几个问题[C]//第十四届中国海洋(岸)工程学术讨论会论文集, 1311-1313. 侯永茂, 王建华, 顾倩燕. 2009. 大跨度双排钢板桩围堰的变形特性分析[J]. 上海交通大学学报, 43 (10): 1577-1580, 1584. doi: 10.3321/j.issn:1006-2467.2009.10.013 黄修平, 杨苏海, 王孝兵. 2020. 深中通道海上大型锚碇施工筑岛围堰设计[J]. 中国港湾建设, 40 (11): 44-48. doi: 10.7640/zggwjs202011009 江杰. 2011. 船坞双排钢板桩围堰施工过程的数值模拟分析[J]. 水运工程, 12 : 144-147. 科技部高新司. 2021. "十四五"国家重点研发计划"交通基础设施"重点专项2021年度项目申报指南(征求意见稿)[EB/OL]. http://www.chinazx.org.cn/i.php?id=3421&ivk_sa=1024320u;http://news.sciencenet.cn/htmlnews/2021/2/452744.shtm. 李小军, 顾倩燕. 2009. 中船长兴造船基地水工构筑物设计关键技术[J]. 水运工程, (8): 43-49. 刘铭祎. 2018. 钢板桩防波堤在港口工程中的应用分析[J]. 工程建设标准化, 12 (2): 102-103. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGBZ201824047.htm 刘晓磊, 朱超祁, 王栋, 等. 2017. 海洋工程地质进展-国际海洋工程地质学术研讨会(ISMEG2016)总结[J]. 工程地质学报, 25 (3): 886-891. doi: 10.13544/j.cnki.jeg.2017.03.038 刘幼如, 王振镛. 2001. 海岸工程使用双排钢板桩作水工建筑物主体的探讨[J]. 水运工程, (12): 21-23. doi: 10.3969/j.issn.1002-4972.2001.12.006 罗毅, 王建新, 彭琦, 等. 2021. 海域双排钢板桩围堰与明挖基坑变形特性分析[J]. 水利与建筑工程学报, 19 (1): 34-38. doi: 10.3969/j.issn.1672-1144.2021.01.006 马永平, 黄海云, 钱玉奇. 2019. 钢板桩在国外某深厚中粗砂层地基船坞工程中的应用[J]. 建筑技术开发, 46 (13): 1-3. doi: 10.3969/j.issn.1001-523X.2019.13.001 牟行勇, 李东山. 2019. 岩质河床条件下双排钢板桩围堰施工关键技术[C]//2019世界交通运输大会论文集(下): 723-733. 尚彦军, 傅冰骏, 蒋毅, 等. 2013. 由工程事故反思论"生态地质工程学"[J]. 工程地质学报, 21 (6): 819-827. doi: 10.3969/j.issn.1004-9665.2013.06.001 王海滨. 2000. 在复杂石灰岩地质条件下建造船坞不同施工工艺的实践[J]. 中国港湾建设, 6 (3): 1-6. doi: 10.3969/j.issn.1003-3688.2000.03.001 王欢. 2020. 土围堰与双层钢板桩围堰相结合的围堰施工技术分析[J]. 西部交通科技, (1): 126-130. 王黎. 2017. 钢板桩常规施工工艺及涂层受损问题[J]. 水运工程, (8): 107-110. doi: 10.3969/j.issn.1002-4972.2017.08.025 伍法权, 兰恒星. 2016. 国际工程地质与环境研究现状及前沿——第十二届国际工程地质大会(IAEG XII)综述[J]. 工程地质学报, 24 (1): 116-129. doi: 10.13544/j.cnki.jeg.2016.01.015 谢龙. 2018. 海上钢板桩围堰防渗漏质量控制[J]. 山西水利, (11): 42-44. doi: 10.3969/j.issn.1004-7042.2018.11.022 杨泉勇. 2021. 水中嵌岩钢板桩施工工艺技术应用研究[J]. 四川建材, 47 (2): 127-128. https://www.cnki.com.cn/Article/CJFDTOTAL-SCJZ202102061.htm 姚慕期, 陈星海. 1993. 大连造船新厂30万吨船坞的围堰工程[J]. 造船工业建设, 2 : 55-62. https://www.cnki.com.cn/Article/CJFDTOTAL-GKGC601.001.htm 叶国良, 肖大平. 1995. 大连造船新厂二十万吨级船坞围堰安全监测分析[J]. 港口工程, 1 : 47-51. https://www.cnki.com.cn/Article/CJFDTOTAL-GKGC501.008.htm 游美歌. 2009. 福建海岸带地质环境背景与海水入侵的形成条件探讨[J]. 工程地质学报, 17 (5): 666-668. doi: 10.3969/j.issn.1004-9665.2009.05.014 郑继民. 1994. 中国海洋工程地质研究[J]. 工程地质学报, 2 (1): 90-96. http://www.gcdz.org/article/id/9944 中华人民共和国国家标准编写组. 2017. 船厂水工构筑物工程钢板桩技术规范(GB/T 8528-2017)[S]. 北京: 中国标准出版社. 中华人民共和国行业标准编写组. 2015. 港口与航道水文规范(JTS145-2015)[S]. 北京: 人民交通出版社. 周厚贵. 1991. 葛洲坝工程纵向围堰钢板桩防腐处理[J]. 人民长江, 22 (1): 38-40. https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE199101012.htm 周振球. 2000. 溶岩地区船坞基坑堵漏和基础处理[J]. 中国港湾建设, 10 (5): 23-26. doi: 10.3969/j.issn.1003-3688.2000.05.005 左其华, 窦希萍, 等. 2014. 中国海岸工程进展[M]. 北京: 海洋出版社. -