双重采动影响下复采煤层巷道稳定性分析与维护方案设计

张大明 孙贵洋 李刚

张大明, 孙贵洋, 李刚. 2021. 双重采动影响下复采煤层巷道稳定性分析与维护方案设计[J]. 工程地质学报, 29(4): 1028-1036. doi: 10.13544/j.cnki.jeg.2021-0380
引用本文: 张大明, 孙贵洋, 李刚. 2021. 双重采动影响下复采煤层巷道稳定性分析与维护方案设计[J]. 工程地质学报, 29(4): 1028-1036. doi: 10.13544/j.cnki.jeg.2021-0380
Zhang Daming, Sun Guiyang, Li Gang. 2021. Support design of the stoping roadway in the re-mined coal seam under influence of dual mining [J]. Journal of Engineering Geology, 29(4): 1028-1036. doi: 10.13544/j.cnki.jeg.2021-0380
Citation: Zhang Daming, Sun Guiyang, Li Gang. 2021. Support design of the stoping roadway in the re-mined coal seam under influence of dual mining [J]. Journal of Engineering Geology, 29(4): 1028-1036. doi: 10.13544/j.cnki.jeg.2021-0380

双重采动影响下复采煤层巷道稳定性分析与维护方案设计

doi: 10.13544/j.cnki.jeg.2021-0380
基金项目: 

采动应力扰动下承压底板水岩耦合损伤致裂机理研究 51774165

详细信息
    作者简介:

    张大明(1979-),男,博士,副教授,硕士生导师,主要从事矿山压力及其控制方面科研与教学工作. E-mail: zdm0418@163.com

    通讯作者:

    孙贵洋(1996-),男,硕士生,主要从事矿山压力及其控制方面研究. E-mail: 1252840664@qq.com

  • 中图分类号: TD12

SUPPORT DESIGN OF THE STOPING ROADWAY IN THE RE-MINED COAL SEAM UNDER INFLUENCE OF DUAL MINING

Funds: 

the Project of Mechanism of Water Rock Coupled Damage and Fracture in Confined Floor under Mining-Induced Stress Disturbance 51774165

  • 摘要: 为了解决薛虎沟煤矿复采煤层回采巷道受双重采动影响下的支护问题,经现场观测,部分巷道顶板存在上部空巷与煤体并存现象,增加了支护难度。通过理论分析和数值模拟的方法对2-106A2巷道在双重采动影响下围岩稳定进行了受力状态分析,并对原支护方案进行了校验,结果表明原支护方案不能满足此条件下的巷道稳定,需要对巷道顶板和右帮(2-106B工作面侧)采取补强支护。利用数值模拟的方法对2-106A2巷道采取补强支护方案后的围岩稳定性进行了分析,模拟结果表明所设计的补强方案合理。另外,在现场采用十字布点法对2-106A2巷道受双重采动影响230 m这段巷道进行了围岩变形量观测,巷道顶板下沉最大量195 mm,左、右两帮移近量分别为124 mm、265 mm,巷道顶板破碎区变形得到了很好的控制,实现了工作面的安全高效回采。
  • 图  1  工作面布置图

    Figure  1.  Working face layout

    图  2  2-106A2巷道支护断面图(单位:mm)

    Figure  2.  Supporting section of roadway 2-106A2(unit: mm)

    图  3  采空区围岩应力重新分布图(钱鸣高等,2010)

    1. 工作面前方超前支承应力;2. 工作面倾斜或仰斜方向残余支承应力;3. 工作面倾斜或仰斜方向残余支承应力;4. 工作面后方采空区支承应力

    Figure  3.  Re-distribution diagram of surrounding rock stress in goaf(Qian et al., 2010)

    图  4  巷道顶部空巷塑性区图

    Figure  4.  Plastic zone diagram of empty roadway at the top of roadway

    图  5  巷道顶部空巷应力图

    Figure  5.  Stress diagram of empty roadway at the top of roadway

    图  6  数值计算模型三维模型示意图

    Figure  6.  Diagram of 3D model of numerical calculation model

    图  7  2-106B工作面停采时巷道应力局部放大图

    Figure  7.  Local enlarged view of roadway stress at 2-106B working face when mining stopped

    图  8  受双重采动影响下巷道应力局部放大图

    Figure  8.  Local enlarged view of roadway stress under the influence of dual mining

    图  9  2-106B工作面停采时巷道顶部空巷应力局部放大图

    Figure  9.  2-106B enlargement of local stress of empty roadway at the top of roadway when mining stopped at working face

    图  10  双重采动影响下巷道顶部空巷应力局部放大图

    Figure  10.  Enlargement of local stress of empty roadway at the top of roadway under the influence of dual mining

    图  11  2-106A2巷道顶板锚索施工示意图(单位:mm)

    Figure  11.  Anchor cable plan for construction on top of roadway 2-106A2(unit: mm)

    图  12  巷道支护断面示意图(单位:mm)

    Figure  12.  Schematic diagram of roadway support section(unit: mm)

    图  13  巷道上方垂直应力分布水平切面云图

    Figure  13.  Horizontal section cloud map of vertical stress distribution above the roadway

    图  14  巷道截面应力分布云图

    Figure  14.  Stress distribution diagram of roadway section

    图  15  巷道垂直位移分布图

    Figure  15.  Vertical displacement distribution diagram of roadway

    图  16  2-106A2巷道实拍图

    Figure  16.  Real photo of 2-106A2 roadway

    表  1  煤岩物理力学参数

    Table  1.   Physical and mechanical parameters of coal and rock

    岩性 抗压强度/MPa 抗拉强度/MPa 弹性模量/GPa 泊松比 黏聚力/MPa 内摩擦角/(°)
    细砂岩 42.80 10.00 4.30 0.33 21.00 40.0
    中砂岩 78.89 5.59 4.10 0.32 20.30 39.0
    砂质泥岩 37.00 4.00 2.45 0.36 1.97 37.0
    煤层 6.50 3.73 1.23 0.27 2.49 25.2
    砂质泥岩 78.89 5.59 4.10 0.32 20.30 39.0
    粉砂岩 31.16 1.86 4.23 0.26 14.60 38.0
    泥岩 41.94 1.70 2.21 0.40 13.72 28.0
    下载: 导出CSV

    表  2  岩石碎胀系数

    Table  2.   Rock breaking expansion coefficient

    软岩 中硬岩 硬岩
    泥岩等 砂岩等 石灰岩等
    1.1~1.2 1.2~1.3 1.3~1.4
    下载: 导出CSV

    表  3  矿用工字钢梁的计算承载能力表

    Table  3.   Calculated bearing capacity table of mine I-beam

    钢型 跨度/m 2.5 3.0 3.5
    材质 QS/kN QB/kN QS/kN QB/kN QS/kN QB/kN
    12# Q275 127.2 282.1 106.0 235.1 90.8 201.5
    下载: 导出CSV
  • Gu D D. 2018. Study on deformation failure laws and adaptability of bolt supporting in deep roadway with broken with broken roof[D]. Qingdao: Shandong University of Science and Technology.
    Hao Y J, Guo L, Tian Y S, et al. 2018. Grouting technology and application of roadway driving on lower slice through coal seam roof pressure crushing zone[J]. Mining Safety and Environmental Protection, 45 (3): 98-101. http://en.cnki.com.cn/Article_en/CJFDTotal-ENER201803022.htm
    Kang H P, Wang J H, Lin J, et al. 2010. Cash studies of rock bolting in coal mine roadways[J]. Chinese Journal of Rock Mechanics and Engineering, 29 (4): 649-664. http://www.researchgate.net/publication/279937366_Case_studies_of_rock_bolting_in_coal_mine_roadways
    Kang H P, Yan L X, Guo X P, et al. 2012. Characteristics of surrounding rock deformation and reinforcement technology of retained entry in working face with multi-entry layout[J]. Chinese Journal of Rock Mechanics and Engineering, 31 (10): 2022-2036. http://www.researchgate.net/publication/286758024_Characteristics_of_surrounding_rock_deformation_and_reinforcement_technology_of_retained_entry_in_working_face_with_multi-entry_layout
    Li L H. 2020. Study on the application of advance support technology with grouting and anchor cable in mining roadway[D]. Xuzhou: China University of Mining and Technology.
    Li Y P, Cui F, Yang W H, et al. 2020. Supporting parameters design and its effect evaluation of broken surrounding rock under the influence of mining[J]. China Mining Industry, 29 (S2): 265-270.
    Ma X M, Lei Y J, Lin T S, et al. 2017. An integrated bolting and grouting technology for large deformation coal roadway and its application[J]. Journal of Mining and Safety Engineering, 34 (5): 940-947.
    Qian M G, Shi P W, Xu J L. 2010. Mine pressure and rock strata Control[M]. Beijing: China University of Mining and Technology Press.
    Sun G J, Wang P, Feng T, et al. 2020. Deformation mechanism and control technology of surrounding rock in soft and broken roof roadway[J]. Coal Science and Technology, 48 (5): 209-215.
    Shan R L, Li Z L, Bao Y S, et al. 2020. Research on synergistic support of bolts and cables for roadway with large-section and thick top coal[J]. Mining Research and Development, 40 (1): 70-75.
    Sui W H, W D D, Sun Y J, et al. 2019. Mine hydrogeological structure and its responses to mining[J]. Journal of Engineering Geology, 27 (1): 21-28. http://en.cnki.com.cn/Article_en/CJFDTotal-GCDZ201901003.htm
    Wu F Q, Sha P. 2019. Achievements of engineering geology in China and the mission in the new era—A review on 2018 Annual Symposium of Engineering Geology of China[J]. Journal of Engineering Geology, 27 (1): 184-194. http://en.cnki.com.cn/Article_en/CJFDTotal-GCDZ201901020.htm
    Wu Y C, Wei Z Y, Tan Y M, et al. 2016. Study on surrounding rock stability and support design of mining gateway under influences of abandoned roadways[J]. Coal Science and Technology, 44 (5): 128-132. http://en.cnki.com.cn/Article_en/CJFDTotal-MTKJ201605025.htm
    Zheng P Q, Chen W Z, Yuan J Q, et al. 2014. Study parameter optimization of support in deep steeply inclined roadway with unsymmetrical loadings[J]. Rock and Soil Mechanics, 35 (S2): 429-436. http://en.cnki.com.cn/Article_en/CJFDTOTAL-YTLX2014S2061.htm
    Zhang D F, Zhang Q L, Zhang H W, et al. 2021. Study on surrounding rock control technology of mining roadway in ultra-deep protective layer[J]. Coal Science and Technology, 49 (2): 45-51.
    Zhang W P. 2021. Study on the height of "three zones" of the overburden of the hard roof in the fully mechanized face[J]. Shandong Coal Science and Technology, (4): 45-47.
    顾东东. 2018. 深部顶板破碎巷道变形破坏规律及锚杆支护适应性研究[D]. 青岛: 山东科技大学.
    郝阳军, 郭亮, 田元帅, 等. 2018. 下分层巷道掘进过煤层顶板压力破碎区注浆技术与现场应用[J]. 矿业安全与环保, 45 (3): 98-101. doi: 10.3969/j.issn.1008-4495.2018.03.022
    康红普, 王金华, 林健, 等. 2010. 煤矿巷道锚杆支护应用实例分析[J]. 岩石力学与工程学报, 29 (4): 649-664. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201004004.htm
    康红普, 颜立新, 郭相平, 等. 2012. 回采工作面多巷布置留巷围岩变形特征与支护技术[J]. 岩土力学与工程学报, 31 (10): 2022-2036. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201210008.htm
    李立华. 2020. 回采巷道注浆锚索式超前支护技术的应用研究[D]. 徐州: 中国矿业大学.
    李云鹏, 崔峰, 杨文化, 等. 2020. 采动影响下破碎围岩巷道支护参数设计及其效果评价[J]. 中国矿业, 29 (S2): 265-270. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA2020S2057.htm
    马鑫民, 雷尹嘉, 林天舒, 等. 2017. 大变形煤巷锚注支护一体化技术及应用[J]. 采矿与安全工程学报, 34 (5): 940-947. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201705017.htm
    钱鸣高, 石平五, 许家林. 2010. 矿山压力与岩层控制[M]. 北京: 中国矿业大学出版社.
    孙广京, 王平, 冯涛, 等. 2020. 软弱破碎顶板巷道围岩变形机理及控制技术[J]. 煤炭科学技术, 48 (5): 209-215. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ202005029.htm
    单仁亮, 李兆龙, 鲍永生, 等. 2020. 大断面厚顶煤回采巷道锚杆索协同支护技术研究[J]. 矿业研究与开发, 40 (1): 70-75. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYK202001014.htm
    隋旺华, 王丹丹, 孙亚军, 等. 2019. 矿山水文地质结构及其采动响应[J]. 工程地质学报, 27 (1): 21-28. doi: 10.13544/j.cnki.jeg.2019-072
    伍法权, 沙鹏. 2019. 中国工程地质学科成就与新时期任务—2018年全国工程地质年会学术总结[J]. 工程地质学报, 27 (1): 184-194. doi: 10.13544/j.cnki.jeg.2018-407
    武越超, 韦志远, 谭英明, 等. 2016. 空巷影响下回采巷道围岩稳定性及支护设计研究[J]. 煤炭科学技术, 44 (5): 128-132. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201605025.htm
    郑朋强, 陈卫忠, 袁敬强, 等. 2014. 深部急倾斜煤层偏压巷道支护参数优化研究[J]. 岩土力学, 35 (S2): 429-436. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2014S2061.htm
    张德飞, 张庆林, 张洪伟, 等. 2021. 超深保护层开采巷道围岩控制技术研究[J]. 煤炭科学技术, 49 (2): 45-51. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ202102006.htm
    张文平. 2021. 综采工作面坚硬顶板上覆岩层"三带"高度研究[J]. 山东煤炭科技, (4): 45-47. doi: 10.3969/j.issn.1005-2801.2021.04.017
  • 加载中
图(16) / 表(3)
计量
  • 文章访问数:  89
  • HTML全文浏览量:  55
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-28
  • 修回日期:  2021-07-30
  • 网络出版日期:  2021-09-03
  • 刊出日期:  2021-09-03

目录

    /

    返回文章
    返回