煤层顶底板采动破坏同步动态监测电性特征分析

杨海平 刘盛东 杨彩 章俊

杨海平, 刘盛东, 杨彩, 等. 2021. 煤层顶底板采动破坏同步动态监测电性特征分析[J]. 工程地质学报, 29(4): 1002-1009. doi: 10.13544/j.cnki.jeg.2021-0395
引用本文: 杨海平, 刘盛东, 杨彩, 等. 2021. 煤层顶底板采动破坏同步动态监测电性特征分析[J]. 工程地质学报, 29(4): 1002-1009. doi: 10.13544/j.cnki.jeg.2021-0395
Yang Haiping, Liu Shengdong, Yang Cai, et al. 2021. Analysis of electrical characteristics of mining destruction on coal seam roof and floor with simultaneous dynamic monitoring method[J]. Journal of Engineering Geology, 29(4): 1002-1009. doi: 10.13544/j.cnki.jeg.2021-0395
Citation: Yang Haiping, Liu Shengdong, Yang Cai, et al. 2021. Analysis of electrical characteristics of mining destruction on coal seam roof and floor with simultaneous dynamic monitoring method[J]. Journal of Engineering Geology, 29(4): 1002-1009. doi: 10.13544/j.cnki.jeg.2021-0395

煤层顶底板采动破坏同步动态监测电性特征分析

doi: 10.13544/j.cnki.jeg.2021-0395
基金项目: 

国家自然基金面上项目 41974149

江苏省自然科学基金青年基金项目 BK20190643

详细信息
    作者简介:

    杨海平(1987-),男,博士生,主要从事应用地球物理学的研究. E-mail: yhaiping666@163.com

    通讯作者:

    刘盛东(1962-),男,教授,博士生导师,主要从事矿井物探、矿井水害防治研究. E-mail: liushengdong@126.com

  • 中图分类号: TD326

ANALYSIS OF ELECTRICAL CHARACTERISTICS OF MINING DESTRUCTION ON COAL SEAM ROOF AND FLOOR WITH SIMULTANEOUS DYNAMIC MONITORING METHOD

Funds: 

the National Natural Science Foundation of China 41974149

Natural Science Foundation of Jiangsu Province BK20190643

  • 摘要: 随着煤炭开采深度的增加,深部复杂条件下开采的水害问题日益严重。复杂条件下煤层回采过程顶底板破坏动态监测对于工作面突水预测、采煤方法改进等具有重要意义。本文基于并行电法监测技术,结合双模式电极数据采集方式,同时在采煤工作面进行煤层顶、底板全空间地电场特征监测研究,获得了煤层围岩顶底板采动前后电阻率及自然电位同步响应特征。研究表明:顶底板跨孔电阻率监测动态变化可以显示孔间电阻率随采煤工作面逐步推进的动态变化情况,可有效表征顶底板破坏带发育范围,同时顶板垮落造成的电阻率变化程度大于底板破裂引起的电阻率变化程度;自然电位数据可分辨顶、底板岩层及裂隙张合形态、以及破裂程度,研究区域内顶板自然电位值明显高于底板自然电位值,且顶板的破裂引起的自电位变化强度明显大于底板破裂引起的自电位变化。采用多参数对煤层顶底板采动破坏进行同步动态监测,对保障采动工作面安全回采具有现实应用价值。
  • 图  1  矿井水文地质剖面示意图

    Figure  1.  Profile of hydrogeological section plane of mine

    图  2  煤层顶、底板采动破坏同步电法监测系统布置图

    Figure  2.  Layout of synchronous electrical monitoring system for coal seam roof and floor mining failure

    图  3  煤层顶、底板4个钻孔背景视电阻率剖面图(单位:Ohm·m)

    Figure  3.  Profile of background value of apparent resistivity of four boreholes in coal seam roof and floor(unit: Ohm·m)

    图  4  煤层顶底板四孔联合视电阻率剖面图(图中视电阻率取对数处理,单位:log10 Ohm·m)

    Figure  4.  Profile of apparent resistivity of four boreholes combination in coal seam roof and floor (the apparent resistivity in the figure is logarithmic, the unit is log10 Ohm·m)

    图  5  工作面底板直流电法三维探测

    a.底板三维探测电阻率反演结果图;b.回采面电阻率反演剖面图

    Figure  5.  3D detection of panel floor by DC method

    图  6  第42#电极自然电位曲线图

    Figure  6.  Self-potential curve of the 42nd electrode

    图  7  顶底板不同位置电极自然电位曲线图

    Figure  7.  Self-potential curves of electrodes at different positions of coal seam roof and floor

    图  8  自然电位时间—强度剖面图

    Figure  8.  Profile of self-potential time-intensity

  • He M C, Xie H P, Peng S P, et al. 2005. Study on rock mechanics in deep mining Engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 24(16): 2803-2813. http://www.researchgate.net/publication/283750234_Study_on_rock_mechanics_in_deep_mining_engineering/download
    Jin D W, Zhao C H, Duan J H, et al. 2020. Research on 3D monitoring and intelligent early warning system for water hazard of coal seam floor[J]. Journal of China Coal Society, 45(6): 2256-2264.
    Li Y B. 1999. "Down Three Zone" in the prediction of the water inrush from coalbed floor aquifer-theory, development and application[J]. Journal of Shandong Institute of Mining and Technology(Natural Science), 18(4): 11-18. http://en.cnki.com.cn/Article_en/CJFDTOTAL-SDKY199904004.htm
    Liu J, Liu S D, Cao Y. 2018. Self-potential characteristics in deep rock mass damage based on point discharge mechanism[J]. Chinese Journal of Geophysics, 61(1): 323-330. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWX201801029.htm
    Liu S D, Yang C, Zhao L G. 2011. Physical simulation research on response to geoelectricity of the aquifer in seepage mutation process[J]. Journal of China Coal Society, 36(5): 772-777. http://www.ingentaconnect.com/content/jccs/jccs/2011/00000036/00000005/art00012
    Liu S D, Liu J, Qi J, et al. 2019. Applied technologies and new advances of parallel electrical method in mining geophysics[J]. Journal of China Coal Society, 44(8): 2336-2345. http://www.zhangqiaokeyan.com/academic-journal-cn_journal-china-coal-society_thesis/0201273288016.html
    Liu S, Wu R, Hu S G, et al. 2006. Network distributed parallel electric exploration system[C]//Chinese Geophysical Society. Proceedings of the 22nd Annual Meeting of the Chinese Geophysical Society. Beijing: Chinese Geophysical Society.
    Lu J J. 2021. Research on the application of direct current resistivity method in coal seam floor water inrush monitoring[J]. Industry and Mine Automation, 47(2): 18-25.
    Lü Y G, Qi D H. 2016. Technique based on "double maps" for assessment of water inrush from roof aquifer and its application-with New Shanghai No. 1 coal mine at western edge of Ordos Basin as example[J]. Coal Geology & Exploration, 44(5): 108-112. http://d.wanfangdata.com.cn/Periodical/mtdzykt201605020
    Shi L Q. 2009. Summary of research on mechanism of water-inrush from seam floor[J]. Journal of Shandong Institute of Mining and Technology(Natural Science), 28(3): 17-23. http://d.wanfangdata.com.cn/Periodical/sdkjdxxb200903004
    Wu R X, Wu M L, Cao J F, et al. 2020. Electrical monitoring of overburden failure in hard roof working face with thick loose layer and thin bedrock[J]. Coal Science and Technology, 48(1): 239-245.
    Xie H P. 2017. Research framework and anticipated results of deep rock mechanics and mining theory[J]. Advanced Engineering Sciences, 49(2): 1-16. http://www.researchgate.net/publication/317213755_Research_Framework_and_Anticipated_Results_of_Deep_Rock_Mechanics_and_Mining_Theory
    Yang C, Liu S D, Hu Z A. 2012. Experimental research on mine roof water-inrush based on response of geoelectric field to groundwater seepage[J]. Geophysical and Geochemical Exploration, 36(2): 220-223. http://en.cnki.com.cn/Article_en/CJFDTOTAL-WTYH201202013.htm
    Yang C, Liu S D, Wu R X. 2017. Quantitative prediction of water volumes within a coal mine underlying limestone strata using geophysical methods[J]. Mine Water & the Environment, 36(1): 51-58. doi: 10.1007/s10230-016-0394-4
    Zhang J C. 2005. Investigations of water inrushes from aquifers under coal seams[J]. International Journal of Rock Mechanics and Mining Sciences, 42(3): 350-360. doi: 10.1016/j.ijrmms.2004.11.010
    Zhang P S, Liu S D, Wu R X, et al. 2009. Dynamic detection of overburden deformation and failure in mining workface by 3D resistivity method[J]. Chinese Journal of Rock Mechanics and Engineering, 28(9): 1870-1875. http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSLX200909020.htm
    Zhang P S, Liu C, Ou Y C, et al. 2021. Comprehensive testing research on floor damage characteristics of mining extra-thick seam in Jungar Coalfield[J]. Coal Geology & Exploration, 49(1): 263-269.
    何满潮, 谢和平, 彭苏萍, 等. 2005. 深部开采岩体力学研究[J]. 岩石力学与工程学报, 24(16): 2803-2813. doi: 10.3321/j.issn:1000-6915.2005.16.001
    靳德武, 赵春虎, 段建华, 等. 2020. 煤层底板水害三维监测与智能预警系统研究[J]. 煤炭学报, 45(6): 2256-2264. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202006032.htm
    李白英. 1999. 预防矿井底板突水的"下三带"理论及其发展与应用[J]. 山东科技大学学报(自然科学版), 18(4): 11-18. https://www.cnki.com.cn/Article/CJFDTOTAL-SDKY199904004.htm
    刘静, 刘盛东, 曹煜. 2018. 基于裂隙尖端放电机制的深部岩体损伤自电特征分析[J]. 地球物理学报, 61(1): 323-330. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201801029.htm
    刘盛东, 杨彩, 赵立瑰. 2011. 含水层渗流突变过程地电场响应的物理模拟[J]. 煤炭学报, 36(5): 772-777. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201105013.htm
    刘盛东, 刘静, 戚俊, 等. 2019. 矿井并行电法技术体系与新进展[J]. 煤炭学报, 44(8): 2336-2345. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201908008.htm
    刘盛东, 吴荣新, 胡水根, 等. 2006. 网络分布式并行电法勘探系统[C]//中国地球物理学会. 中国地球物理学会第22届年会论文集. 北京: 中国地球物理学会.
    鲁晶津. 2021. 直流电阻率法在煤层底板水害监测中的应用研究[J]. 工矿自动化, 47(2): 18-25. https://www.cnki.com.cn/Article/CJFDTOTAL-MKZD202102004.htm
    吕玉广, 齐东合. 2016. 顶板突(涌)水危险性"双图"评价技术与应用--以鄂尔多斯盆地西缘新上海一号煤矿为例[J]. 煤田地质与勘探, 44(5): 108-112. doi: 10.3969/j.issn.1001-1986.2016.05.020
    施龙青. 2009. 底板突水机理研究综述[J]. 山东科技大学学报(自然科学版), 28(3): 17-23. doi: 10.3969/j.issn.1672-3767.2009.03.004
    吴荣新, 吴茂林, 曹建富, 等. 2020. 厚松散层薄基岩坚硬顶板工作面覆岩破坏电法监测[J]. 煤炭科学技术, 48(1): 239-245. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ202001030.htm
    谢和平. 2017. "深部岩体力学与开采理论"研究构想与预期成果展望[J]. 工程科学与技术, 49(2): 1-16. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH201702001.htm
    杨彩, 刘盛东, 胡泽安. 2012. 基于地电场响应的矿井顶板突水模拟实验[J]. 物探与化探, 36(2): 220-223. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201202013.htm
    杨彩, 刘盛东, 吴荣新. 2017. 应用地球物理方法定量预测某煤矿下伏灰岩地层内的水量[J]. 矿井水与环境, 36(1): 51-58.
    张晋才. 2005. 煤层下伏含水层突水调查[J]. 国际岩石力学与采矿科学杂志, 42(3): 350-360.
    张平松, 刘盛东, 吴荣新, 等. 2009. 采煤面覆岩变形与破坏立体电法动态测试[J]. 岩石力学与工程学报, 28(9): 1870-1875. doi: 10.3321/j.issn:1000-6915.2009.09.019
    张平松, 刘畅, 欧元超, 等. 2021. 准格尔煤田特厚煤层开采底板破坏特征综合测试研究[J]. 煤田地质与勘探, 49(1): 263-269. doi: 10.3969/j.issn.1001-1986.2021.01.029
  • 加载中
图(8)
计量
  • 文章访问数:  64
  • HTML全文浏览量:  97
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-30
  • 修回日期:  2021-07-08
  • 网络出版日期:  2021-09-03
  • 刊出日期:  2021-09-03

目录

    /

    返回文章
    返回