地震动加速度幅值对土坡失稳后滑坡体大小及致灾范围的影响

张卫杰 余瑞华 宋健 姬建

张卫杰, 余瑞华, 宋健, 等. 2022. 地震动加速度幅值对土坡失稳后滑坡体大小及致灾范围的影响[J]. 工程地质学报, 30(2): 565-574. doi: 10.13544/j.cnki.jeg.2021-0420
引用本文: 张卫杰, 余瑞华, 宋健, 等. 2022. 地震动加速度幅值对土坡失稳后滑坡体大小及致灾范围的影响[J]. 工程地质学报, 30(2): 565-574. doi: 10.13544/j.cnki.jeg.2021-0420
Zhang Weijie, Yu Ruihua, Song Jian, et al. 2022. Influence of ground motion acceleration amplitude on sliding body size and disaster-causing range of soil slopes[J]. Journal of Engineering Geology, 30(2): 565-574. doi: 10.13544/j.cnki.jeg.2021-0420
Citation: Zhang Weijie, Yu Ruihua, Song Jian, et al. 2022. Influence of ground motion acceleration amplitude on sliding body size and disaster-causing range of soil slopes[J]. Journal of Engineering Geology, 30(2): 565-574. doi: 10.13544/j.cnki.jeg.2021-0420

地震动加速度幅值对土坡失稳后滑坡体大小及致灾范围的影响

doi: 10.13544/j.cnki.jeg.2021-0420
基金项目: 

国家自然科学基金 51808192

国家自然科学基金 51890912

国家自然科学基金 41630638

中央高校基本科研业务费专项资金 B210202039

详细信息
    通讯作者:

    张卫杰(1986-),男,博士,青年教授,硕士生导师,主要从事岩土数值分析、边坡灾害防治方面的科研与教学工作. E-mail:zhangwj2016@hhu.edu.cn

  • 中图分类号: P642.22

INFLUENCE OF GROUND MOTION ACCELERATION AMPLITUDE ON SLIDING BODY SIDE AND DISASTER-CAUSING RANGE OF SOIL SLOPES

Funds: 

the National Natural Science Foundation of China 51808192

the National Natural Science Foundation of China 51890912

the National Natural Science Foundation of China 41630638

the Fundamental Research Funds for the Central Universities B210202039

  • 摘要: 地震滑坡的致灾范围是判断滑坡能否会对已有建构筑物造成损失、确定预警疏散范围的重要依据,因此对地震土坡破坏后的滑坡体大小和致灾范围进行研究具有重要的意义。本研究基于SPH动力分析方法,结合弹塑性本构模型和固体力学控制方程建立了地震土坡破坏的动力分析模型;通过设置振动边界粒子和自由场边界粒子,实现了地震动加速度的施加以及自由场边界的模拟。利用提出的SPH动力分析方法,对已有的振动台土坡试验进行了模拟,获得了与试验相似的土坡滑动形态,验证了SPH动力分析方法的准确性和精度。此后,设计了不同坡度土坡的计算案例,考虑地震动加速度幅值的影响进行了SPH动力分析,得到了各种工况下地震土坡失稳后滑坡体的大小和致灾范围。模拟结果表明同一土坡在不同地震动幅值作用下存在相似的滑动面,且潜在滑动区域随着地震动幅值的增大而增加;随着坡度的增大,土坡在不同地震动加速度幅值下的稳定性均呈现下降趋势,致灾范围变大,但滑坡体的区域面积却在减小。
  • 图  1  振动台土坡模拟尺寸图

    Figure  1.  Dimension of slope in shaking table test

    图  2  SPH模拟的试验土坡变形发展过程图(单位:m)

    a. 500 Gal 2 Hz施加完毕时边坡破坏形态图;
    b. 500 Gal 5 Hz施加完毕时边坡破坏形态图;
    c. 500 Gal 10 Hz施加完毕时边坡破坏形态图;
    d. 700 Gal 10 Hz施加完毕时边坡破坏形态图

    Figure  2.  Deformation development process of test slope simulated by SPH(unit: m)

    图  3  土坡最终形态对比图(单位:m)

    a. 振动台试验边坡破坏最终形态;
    b. SPH模拟地震边坡破坏最终形态

    Figure  3.  Final shape comparison of slope(unit: m)

    图  4  不同土坡尺寸图

    Figure  4.  Dimension of slopes with different angles

    图  5  KOBE波加速度时程图

    Figure  5.  Acceleration time series of KOBE wave

    图  6  边坡角为40°的土坡在不同地震动幅值作用下的总位移云图(单位:m)

    a. 1.0倍地震动幅值作用下;b. 2.0倍地震动幅值作用下;c. 3.0倍地震动幅值作用下

    Figure  6.  Color map of total displacement of 40°slope under different ground motion amplitudes(unit: m)

    图  7  边坡角为60°的土坡在不同地震动幅值作用下的总位移云图(单位:m)

    a. 1.0倍地震动幅值作用下;b. 2.0倍地震动幅值作用下;c. 3.0倍地震动幅值作用下

    Figure  7.  Color map of total displacement of 60°slope under different ground motion amplitudes(unit: m)

    图  8  不同地震动幅值作用下土坡最大水平位移变化柱状图

    Figure  8.  Histogram of maximum horizontal displacement of slopes with different ground motion amplitudes

    图  9  在2.0倍地震动幅值作用下40°和60°土坡剪应变和总位移云图(单位:m)

    a1. 40°边坡最大剪应变云图;a2. 40°边坡总位移云图;b1. 60°边坡最大剪应变云图;b2. 60°边坡总位移云图;

    Figure  9.  Color map of shear strain and total displacement of 40°and 60°soil slopes with 2.0 times ground motion amplitude(unit: m)

    图  10  以0.60 m为位移阈值各土坡在2.0倍地震动幅值作用下滑坡体分布图

    a. 30°边坡;b. 40°边坡;c. 50°边坡;d. 60°边坡

    Figure  10.  Distribution map of sliding body with 2.0 times ground motion amplitude when threshold is 0.60 m

    图  11  以0.60 m为位移阈值各土坡在3.0倍地震动幅值作用下滑坡体分布图

    a. 30°边坡;b. 40°边坡;c. 50°边坡;d. 60°边坡

    Figure  11.  Distribution map of sliding body with 3.0 times ground motion amplitude when threshold is 0.60 m

    图  12  2.0倍地震动幅值作用下不同位移阈值土坡滑坡体大小变化曲线

    Figure  12.  Sliding body size variations of soil slopes with 2.0 times ground motion amplitude under different deformation thresholds

    图  13  3.0倍地震动幅值作用下不同位移阈值土坡滑坡体大小变化曲线

    Figure  13.  Sliding body size variations of soil slopes with 3.0 times ground motion amplitude under different deformation thresholds

    表  1  振动台土坡模型SPH模拟的参数

    Table  1.   Parameters in SPH simulation of shaking table test

    参数 参数
    初始粒子间距/m 0.01 密度/kg·m-3 1800
    时间步长间隔/s 2.5×10-5 重力加速度/m·s-2 9.81
    总步长 1.21×107
    下载: 导出CSV

    表  2  振动台土坡模型SPH模拟中的本构参数

    Table  2.   Constitutive parameters in shaking table test

    参数 参数
    弹性模量/MPa 25.0 黏聚力/Pa 500
    泊松比 0.25 内摩擦角/(°) 40.0
    土骨架密度/kg·m-3 2650 初始孔隙比 0.80
    下载: 导出CSV

    表  3  土坡模型SPH模拟的参数

    Table  3.   Parameters in SPH simulation of soil slope model

    参数 参数
    初始粒子间距/m 0.20 密度/kg·m-3 1900
    时间步长间隔/s 2.5×10-5 重力加速度/m·s-2 9.81
    总步长 1.21×106
    下载: 导出CSV

    表  4  土坡模型SPH模拟中的本构模型参数

    Table  4.   Constitutive parameters in SPH simulation of slope model

    参数 参数
    弹性模量/MPa 10.0 黏聚力/kPa 12
    泊松比 0.25 内摩擦角/(°) 26.0
    土骨架密度/kg·m-3 2650 初始孔隙比 0.80
    下载: 导出CSV

    表  5  SPH模拟土坡工况表

    Table  5.   SPH simulating cases for soil slopes

    案例 土坡坡度/(°) 工况 案例 土坡坡度/(°) 工况 案例 土坡坡度/(°) 工况
    1-1 30 1.0倍地震动幅值 2-1 30 2.0倍地震动幅值 3-1 30 3.0倍地震动幅值
    1-2 40 1.0倍地震动幅值 2-2 40 2.0倍地震动幅值 3-2 40 3.0倍地震动幅值
    1-3 50 1.0倍地震动幅值 2-3 50 2.0倍地震动幅值 3-3 50 3.0倍地震动幅值
    1-4 60 1.0倍地震动幅值 2-4 60 2.0倍地震动幅值 3-4 60 3.0倍地震动幅值
    下载: 导出CSV
  • Bao Y J, Huang Y, Liu G R, et al. 2020a. SPH simulation of high-volume rapid landslides triggered by earthquakes based on a unified constitutive model. Part I: Initiation process and slope failure[J]. International Journal of Computational Methods, 17(4): 1850150. doi: 10.1142/S0219876218501505
    Bao Y J, Huang Y, Liu G R, et al. 2020b. SPH simulation of high-volume rapid landslides triggered by earthquakes based on a unified constitutive model. Part Ⅱ: Solid-liquid-like phase transition and flow-like landslides[J]. International Journal of Computational Methods, 17(4): 1850149. doi: 10.1142/S0219876218501499
    Bui H H, Sako K, Fukagawa R. 2007. Numerical simulation of soil-water interaction using smoothed particle hydrodynamics(SPH)method[J]. Journal of Terramechanics, 44 (5): 339-346. doi: 10.1016/j.jterra.2007.10.003
    Bui H H, Fukagawa R. 2013. An improved SPH method for saturated soils and its application to investigate the mechanisms of embankment failure: Case of hydrostatic pore-water pressure[C]. International Journal for Numerical and Analytical Methods in Geomechanics, 37 : 31-50.
    Cui S H, Pei X J, Huang R Q, et al. 2019. Geological features and causes of the Wenchuan earthquake triggered large landslides on right bank of Huangdongzi gully[J]. Journal of Engineering Geology, 27 (2): 437-450.
    Hazari S, Ghosh S, Sharma R P. 2020. Experimental and numerical study of soil slopes at varying water content under dynamic loading condition[J]. International Journal of Civil Engineering, 18 (2): 215-229. doi: 10.1007/s40999-019-00439-w
    Han X, Han T. 2020. Study on acceleration response law of layered soil slope under earthquake[J]. Urbanism and Architecture, 17 (4): 192-195.
    Hiraoka N, Oya A, Rajeev P, et al. 2013. Seismic slope failure modelling using the mesh-free SPH method[J]. International Journal of GEOMATE, 5 (1): 660-665.
    Hong H J, Xu Q, Liu H X, et al. 2013. Dynamic response characteristics of horizontal slopes subjected to seismic ground motions in different directions[J]. Earthquake of Engineering and Engineering Vibration, 33 (2): 214-220.
    Hu M, Wu F, Wang S J, et al. 2019. Modeling of influenced area after slope failure based on smoothed particle hydrodynamics(SPH)[J]. Journal of Chongqing University, 42 (5): 56-65.
    Huang R Q, Zhang W F, Pei X J. 2014. Engineering geological study on Daguangbao Landslide[J]. Journal of Engineering Geology, 22 (4): 557-585.
    Huang Y, Dai Z L, Zhang W J. 2014. Geo-disaster modeling and analysis: An SPH-based approach[M]. Berlin Heidelberg: Springer.
    Huang D, Qiao J P, Zhang X G, et al. 2017. Experimental research of the topographic effects of slopes in earthquake[J]. Chinese Journal of Rock Mechanics and Engineering, 36 (3): 587-598.
    Li L, Wang Y. 2020. Identification of failure slip surfaces for landslide risk assessment using smoothed particle hydrodynamics[J]. Georisk Assessment and Management of Risk for Engineered Systems and Geohazards, 14 (2): 91-111. doi: 10.1080/17499518.2019.1602877
    Luo Y, Yao T Z. 2019. Effect of different ground motion parameters on dynamic response of slopes under repeated micro-seismic action[J]. Sichuan Building Science, 45 (6): 55-59.
    McDougall S, Hungr O. 2005. Dynamic modelling of entrainment in rapid landslides[J]. Canadian Geotechnical Journal, 42 (5): 1437-1448. doi: 10.1139/t05-064
    Peng C, Wang S, Wu W, et al. 2019. LOQUAT: an open-source GPU-accelerated SPH solver for geotechnical modeling[J]. Acta Geotechnica, 14 (5): 1269-1287. doi: 10.1007/s11440-019-00839-1
    Rathje E M, Antonakos G. 2011. A unified model for predicting earthquake-induced sliding displacements of rigid and flexible slopes[J]. Engineering Geology, 122(1-2): 51-60. doi: 10.1016/j.enggeo.2010.12.004
    Shamy U E, Hassan S. 2019. DEM simulations of the seismic response of granular slopes[J]. Computers & Geotechnics, 112 : 230-244.
    Song K, Wu S G, Chang T, et al. 2019. Research on landslide development mechanism of loose accumulation slope under earthquake condition[C]. Geotechnical Special Publication, 304 : 566-575.
    Xu C, Xu X W, Zhou B G, et al. 2019. Probability of coseismic landslides: A new generation of earthquake-triggered landslide hazard model[J]. Journal of Engineering Geology, 27 (5): 1122-1130.
    Zhang J W, Li X J, Yuan Y, et al. 2017. Influence law of ground motion parameters on soil slope seismic response[J]. Acta Seismologica Sinica, 39 (5): 798-805.
    Zhang J W, Li X J, Qi J F, et al. 2018. Effect of influence weights of ground motion parameters on soil slope seismic responses[J]. Journal of Vibration and Shock, 37 (6): 225-230.
    Zhang W J, Maeda K, Saito H, et al. 2016. Numerical analysis on seepage failures of dike due to water level-up and rainfall using a water-soil-coupled smoothed particle hydrodynamics model[J]. Acta Geotechnica, 11 (6): 1401-1418. doi: 10.1007/s11440-016-0488-y
    崔圣华, 裴向军, 黄润秋, 等. 2019. 汶川地震黄洞子沟右岸大型滑坡地质构造特征及成因[J]. 工程地质学报, 27 (2): 437-450. doi: 10.13544/j.cnki.jeg.2017-179
    韩雪, 韩婷. 2020. 地震作用下分层土边坡加速度响应规律研究[J]. 城市建筑, 17 (4): 192-195. doi: 10.3969/j.issn.1673-0232.2020.04.045
    侯红娟, 许强, 刘汉香, 等. 2013. 不同方向地震动作用下水平层状边坡动力响应特性[J]. 地震工程与工程振动, 33 (2): 214-220. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC201302028.htm
    胡嫚, 吴飞, 汪时机, 等. 2019. 基于光滑粒子法边坡失稳影响范围的模拟[J]. 重庆大学学报, 42 (5): 60-69. https://www.cnki.com.cn/Article/CJFDTOTAL-FIVE201905007.htm
    黄栋, 乔建平, 张小刚, 等. 2017. 堆积层斜坡地震动地形效应试验研究[J]. 岩石力学与工程学报, 36 (3): 587-598. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201703008.htm
    黄润秋, 张伟锋, 裴向军. 2014. 大光包滑坡工程地质研究[J]. 工程地质学报, 22 (4): 557-585. doi: 10.13544/j.cnki.jeg.2014.04.004
    罗洋, 姚添智. 2019. 不同震动参数对反复微小地震下边坡动力响应规律的影响[J]. 四川建筑科学研究, 45 (6): 55-59. https://www.cnki.com.cn/Article/CJFDTOTAL-ACZJ201906012.htm
    许冲, 徐锡伟, 周本刚, 等. 2019. 同震滑坡发生概率研究-新一代地震滑坡危险性模型[J]. 工程地质学报, 27 (5): 1122-1130. doi: 10.13544/j.cnki.jeg.2019084
    张江伟, 李小军, 袁颖, 等. 2017. 地震动参数对边坡地震响应的影响规律[J]. 地震学报, 39 (5): 798-805. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB201705013.htm
    张江伟, 李小军, 齐剑峰, 等. 2018. 地震动参数对土坡地震响应的影响权重研究[J]. 振动与冲击, 37 (6): 225-230. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201806036.htm
  • 加载中
图(13) / 表(5)
计量
  • 文章访问数:  414
  • HTML全文浏览量:  108
  • PDF下载量:  83
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-30
  • 修回日期:  2021-09-08
  • 刊出日期:  2022-04-25

目录

    /

    返回文章
    返回