INFLUENCE OF GROUND MOTION ACCELERATION AMPLITUDE ON SLIDING BODY SIDE AND DISASTER-CAUSING RANGE OF SOIL SLOPES
-
摘要: 地震滑坡的致灾范围是判断滑坡能否会对已有建构筑物造成损失、确定预警疏散范围的重要依据,因此对地震土坡破坏后的滑坡体大小和致灾范围进行研究具有重要的意义。本研究基于SPH动力分析方法,结合弹塑性本构模型和固体力学控制方程建立了地震土坡破坏的动力分析模型;通过设置振动边界粒子和自由场边界粒子,实现了地震动加速度的施加以及自由场边界的模拟。利用提出的SPH动力分析方法,对已有的振动台土坡试验进行了模拟,获得了与试验相似的土坡滑动形态,验证了SPH动力分析方法的准确性和精度。此后,设计了不同坡度土坡的计算案例,考虑地震动加速度幅值的影响进行了SPH动力分析,得到了各种工况下地震土坡失稳后滑坡体的大小和致灾范围。模拟结果表明同一土坡在不同地震动幅值作用下存在相似的滑动面,且潜在滑动区域随着地震动幅值的增大而增加;随着坡度的增大,土坡在不同地震动加速度幅值下的稳定性均呈现下降趋势,致灾范围变大,但滑坡体的区域面积却在减小。Abstract: The disaster-causing range formed by the earthquake landslide is an important basis for judging whether the landslide can cause losses to existing structures and determining the early warning evacuation range. Therefore,it is necessary to study the sliding body size and disaster-causing range after the post sliding of soil slopes triggered by the earthquake. Based on the dynamic SPH analysis method,combined with the elastoplastic constitutive model and the governing equation of solid mechanics,we establish a dynamic analysis model for the seismic soil slope failure. By setting the vibration boundary particles and the free field boundary particles,we realize the application of ground motion acceleration and the simulation of the free field boundary. We use the dynamic SPH analysis method to simulate an existing shaking table test for soil slope. And we obtain a sliding form similar to the shaking table test slope from the SPH simulation. This result verifies the accuracy and precision of the dynamic SPH analysis method. Afterwards,we design calculation cases of soil slopes with different slope angles. And we carriy out SPH analysis considering the influence of ground motion acceleration amplitude. Finally we obtain the sliding body size and the disaster-causing range of landslide after instability of seismic soil slopes under various working conditions. The simulation results show that the soil slope has a similar sliding surface under the action of different ground motion amplitudes. And the potential sliding area increases with the increase of the ground motion amplitude. Meanwhile,the stability of the soil slope under different ground motion acceleration amplitudes shows a downward trend. And the disaster-causing range becomes larger,while the sliding body size is decreasing.
-
表 1 振动台土坡模型SPH模拟的参数
Table 1. Parameters in SPH simulation of shaking table test
参数 值 参数 值 初始粒子间距/m 0.01 密度/kg·m-3 1800 时间步长间隔/s 2.5×10-5 重力加速度/m·s-2 9.81 总步长 1.21×107 表 2 振动台土坡模型SPH模拟中的本构参数
Table 2. Constitutive parameters in shaking table test
参数 值 参数 值 弹性模量/MPa 25.0 黏聚力/Pa 500 泊松比 0.25 内摩擦角/(°) 40.0 土骨架密度/kg·m-3 2650 初始孔隙比 0.80 表 3 土坡模型SPH模拟的参数
Table 3. Parameters in SPH simulation of soil slope model
参数 值 参数 值 初始粒子间距/m 0.20 密度/kg·m-3 1900 时间步长间隔/s 2.5×10-5 重力加速度/m·s-2 9.81 总步长 1.21×106 表 4 土坡模型SPH模拟中的本构模型参数
Table 4. Constitutive parameters in SPH simulation of slope model
参数 值 参数 值 弹性模量/MPa 10.0 黏聚力/kPa 12 泊松比 0.25 内摩擦角/(°) 26.0 土骨架密度/kg·m-3 2650 初始孔隙比 0.80 表 5 SPH模拟土坡工况表
Table 5. SPH simulating cases for soil slopes
案例 土坡坡度/(°) 工况 案例 土坡坡度/(°) 工况 案例 土坡坡度/(°) 工况 1-1 30 1.0倍地震动幅值 2-1 30 2.0倍地震动幅值 3-1 30 3.0倍地震动幅值 1-2 40 1.0倍地震动幅值 2-2 40 2.0倍地震动幅值 3-2 40 3.0倍地震动幅值 1-3 50 1.0倍地震动幅值 2-3 50 2.0倍地震动幅值 3-3 50 3.0倍地震动幅值 1-4 60 1.0倍地震动幅值 2-4 60 2.0倍地震动幅值 3-4 60 3.0倍地震动幅值 -
Bao Y J, Huang Y, Liu G R, et al. 2020a. SPH simulation of high-volume rapid landslides triggered by earthquakes based on a unified constitutive model. Part I: Initiation process and slope failure[J]. International Journal of Computational Methods, 17(4): 1850150. doi: 10.1142/S0219876218501505 Bao Y J, Huang Y, Liu G R, et al. 2020b. SPH simulation of high-volume rapid landslides triggered by earthquakes based on a unified constitutive model. Part Ⅱ: Solid-liquid-like phase transition and flow-like landslides[J]. International Journal of Computational Methods, 17(4): 1850149. doi: 10.1142/S0219876218501499 Bui H H, Sako K, Fukagawa R. 2007. Numerical simulation of soil-water interaction using smoothed particle hydrodynamics(SPH)method[J]. Journal of Terramechanics, 44 (5): 339-346. doi: 10.1016/j.jterra.2007.10.003 Bui H H, Fukagawa R. 2013. An improved SPH method for saturated soils and its application to investigate the mechanisms of embankment failure: Case of hydrostatic pore-water pressure[C]. International Journal for Numerical and Analytical Methods in Geomechanics, 37 : 31-50. Cui S H, Pei X J, Huang R Q, et al. 2019. Geological features and causes of the Wenchuan earthquake triggered large landslides on right bank of Huangdongzi gully[J]. Journal of Engineering Geology, 27 (2): 437-450. Hazari S, Ghosh S, Sharma R P. 2020. Experimental and numerical study of soil slopes at varying water content under dynamic loading condition[J]. International Journal of Civil Engineering, 18 (2): 215-229. doi: 10.1007/s40999-019-00439-w Han X, Han T. 2020. Study on acceleration response law of layered soil slope under earthquake[J]. Urbanism and Architecture, 17 (4): 192-195. Hiraoka N, Oya A, Rajeev P, et al. 2013. Seismic slope failure modelling using the mesh-free SPH method[J]. International Journal of GEOMATE, 5 (1): 660-665. Hong H J, Xu Q, Liu H X, et al. 2013. Dynamic response characteristics of horizontal slopes subjected to seismic ground motions in different directions[J]. Earthquake of Engineering and Engineering Vibration, 33 (2): 214-220. Hu M, Wu F, Wang S J, et al. 2019. Modeling of influenced area after slope failure based on smoothed particle hydrodynamics(SPH)[J]. Journal of Chongqing University, 42 (5): 56-65. Huang R Q, Zhang W F, Pei X J. 2014. Engineering geological study on Daguangbao Landslide[J]. Journal of Engineering Geology, 22 (4): 557-585. Huang Y, Dai Z L, Zhang W J. 2014. Geo-disaster modeling and analysis: An SPH-based approach[M]. Berlin Heidelberg: Springer. Huang D, Qiao J P, Zhang X G, et al. 2017. Experimental research of the topographic effects of slopes in earthquake[J]. Chinese Journal of Rock Mechanics and Engineering, 36 (3): 587-598. Li L, Wang Y. 2020. Identification of failure slip surfaces for landslide risk assessment using smoothed particle hydrodynamics[J]. Georisk Assessment and Management of Risk for Engineered Systems and Geohazards, 14 (2): 91-111. doi: 10.1080/17499518.2019.1602877 Luo Y, Yao T Z. 2019. Effect of different ground motion parameters on dynamic response of slopes under repeated micro-seismic action[J]. Sichuan Building Science, 45 (6): 55-59. McDougall S, Hungr O. 2005. Dynamic modelling of entrainment in rapid landslides[J]. Canadian Geotechnical Journal, 42 (5): 1437-1448. doi: 10.1139/t05-064 Peng C, Wang S, Wu W, et al. 2019. LOQUAT: an open-source GPU-accelerated SPH solver for geotechnical modeling[J]. Acta Geotechnica, 14 (5): 1269-1287. doi: 10.1007/s11440-019-00839-1 Rathje E M, Antonakos G. 2011. A unified model for predicting earthquake-induced sliding displacements of rigid and flexible slopes[J]. Engineering Geology, 122(1-2): 51-60. doi: 10.1016/j.enggeo.2010.12.004 Shamy U E, Hassan S. 2019. DEM simulations of the seismic response of granular slopes[J]. Computers & Geotechnics, 112 : 230-244. Song K, Wu S G, Chang T, et al. 2019. Research on landslide development mechanism of loose accumulation slope under earthquake condition[C]. Geotechnical Special Publication, 304 : 566-575. Xu C, Xu X W, Zhou B G, et al. 2019. Probability of coseismic landslides: A new generation of earthquake-triggered landslide hazard model[J]. Journal of Engineering Geology, 27 (5): 1122-1130. Zhang J W, Li X J, Yuan Y, et al. 2017. Influence law of ground motion parameters on soil slope seismic response[J]. Acta Seismologica Sinica, 39 (5): 798-805. Zhang J W, Li X J, Qi J F, et al. 2018. Effect of influence weights of ground motion parameters on soil slope seismic responses[J]. Journal of Vibration and Shock, 37 (6): 225-230. Zhang W J, Maeda K, Saito H, et al. 2016. Numerical analysis on seepage failures of dike due to water level-up and rainfall using a water-soil-coupled smoothed particle hydrodynamics model[J]. Acta Geotechnica, 11 (6): 1401-1418. doi: 10.1007/s11440-016-0488-y 崔圣华, 裴向军, 黄润秋, 等. 2019. 汶川地震黄洞子沟右岸大型滑坡地质构造特征及成因[J]. 工程地质学报, 27 (2): 437-450. doi: 10.13544/j.cnki.jeg.2017-179 韩雪, 韩婷. 2020. 地震作用下分层土边坡加速度响应规律研究[J]. 城市建筑, 17 (4): 192-195. doi: 10.3969/j.issn.1673-0232.2020.04.045 侯红娟, 许强, 刘汉香, 等. 2013. 不同方向地震动作用下水平层状边坡动力响应特性[J]. 地震工程与工程振动, 33 (2): 214-220. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC201302028.htm 胡嫚, 吴飞, 汪时机, 等. 2019. 基于光滑粒子法边坡失稳影响范围的模拟[J]. 重庆大学学报, 42 (5): 60-69. https://www.cnki.com.cn/Article/CJFDTOTAL-FIVE201905007.htm 黄栋, 乔建平, 张小刚, 等. 2017. 堆积层斜坡地震动地形效应试验研究[J]. 岩石力学与工程学报, 36 (3): 587-598. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201703008.htm 黄润秋, 张伟锋, 裴向军. 2014. 大光包滑坡工程地质研究[J]. 工程地质学报, 22 (4): 557-585. doi: 10.13544/j.cnki.jeg.2014.04.004 罗洋, 姚添智. 2019. 不同震动参数对反复微小地震下边坡动力响应规律的影响[J]. 四川建筑科学研究, 45 (6): 55-59. https://www.cnki.com.cn/Article/CJFDTOTAL-ACZJ201906012.htm 许冲, 徐锡伟, 周本刚, 等. 2019. 同震滑坡发生概率研究-新一代地震滑坡危险性模型[J]. 工程地质学报, 27 (5): 1122-1130. doi: 10.13544/j.cnki.jeg.2019084 张江伟, 李小军, 袁颖, 等. 2017. 地震动参数对边坡地震响应的影响规律[J]. 地震学报, 39 (5): 798-805. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB201705013.htm 张江伟, 李小军, 齐剑峰, 等. 2018. 地震动参数对土坡地震响应的影响权重研究[J]. 振动与冲击, 37 (6): 225-230. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201806036.htm -