PREDICTION METHOD FOR CONTRIBUTION RATE OF WAVE-INDUCED SEABED TRANSIENT LIQUEFACTION TO RESUSPENSION BASED ON DEEP LEARNING
-
摘要: 波致瞬态液化渗流导致海床内细粒沉积物向海水中运移,这一过程对海底沉积物再悬浮的贡献率不容忽视,但是贡献率的准确估计和预测比较困难。本研究将黄河水下三角洲的观测数据(包括水深、有效波高、有效波周期、实验舱内悬沙浓度、实验舱外悬沙浓度)作为模型输入数据集,基于长短时记忆循环神经网络建立了瞬态液化对再悬浮贡献率的深度学习预测模型。为了客观评价模型的性能,以平均绝对百分比误差、均方根误差和平均平方误差-标准偏差为评判标准,将该深度学习模型与其他预测模型(支持向量回归模型、人工神经网络)的预测结果进行了比较。结果表明,基于长短时记忆循环神经网络的深度学习模型对3.5d以内的瞬态泵送再悬浮贡献率预测误差最小,其平均绝对百分比误差、均方根误差和平均平方误差-标准偏差分别为5.87%、1.6730、0.1574。因此,该模型可以有效地减少机器学习方法在连续预测中产生的误差叠加问题。Abstract: Wave-induced transient liquefaction seepage leads to the transport of fine-grained sediments from the seabed to seawater. The contribution of wave-induced transient liquefaction to the sediment resuspension cannot be ignored,and the accurate prediction of the contribution is difficult. The observation data in the Yellow River subaquatic delta include water depth,significant wave height,significant wave period,suspended sediment concentration in the benthic chamber,and suspended sediment concentration out of the benthic chamber. These data are treated as the input data sets. Then,a deep learning model of transient liquefaction contribution to resuspension is developed based on a long short-term memory recurrent neural network. To evaluate the performance of the model,the prediction results of the deep learning model based on LSTM are compared with other models. These models include Support Vector Regression and Artificial Neural Network,and have mean absolute percentage error(MAPE),root mean square error(RMSE) and mean squared error-standard deviation(RSR). The results show that the LSTM model has the smallest error for transient pumping resuspension contribution within 3.5 days,with the mean values of MAPE,RMSE,and RSR of 5.87%,1.6730,and 0.1574,respectively. Therefore,the LSTM model can effectively reduce the error superposition problem arising from machine learning methods in continuous forecasting.
-
表 1 SVR,ANN,LSTM模型的MAPE值、RMSE值、RSR值
Table 1. MAPE values, RMSE values and RSR values of SVR, ANN and LSTM models
模型 MAPE RMSE RSR SVR 39.96 9.8839 0.7526 ANN 19.64 4.6435 0.3536 LSTM 5.87 1.6730 0.1574 -
Dey S,Ali S Z,Padhi E. 2018. Advances in analytical modeling of suspended sediment transport[J]. Journal of Hydro-environment Research,20 : 110-126. doi: 10.1016/j.jher.2018.02.004 Du X, Sun Y F, Song Y P, et al. 2020. Multilayer perception neural network for assessment and prediction of earthquake-induced sand liquefaction[J]. Journal of Engineering Geology, 28 (6): 1425-1432. Goldstein E B, Coco G, Plant N G. 2019. A review of machine learning applications to coastal sediment transport and morphodynamics[J]. Earth-Science Reviews, 194 : 97-108. doi: 10.1016/j.earscirev.2019.04.022 Graves A, Jaitly N, Mohamed A R. 2013. Hybrid speech recognition with deep bidirectional LSTM[C]//Automatic speech Recognition and Understanding (ASRU), 2013 IEEE Workshop on IEEE. [S.L.]: [s.n.] Green M O, Coco G. 2014. Review of wave-driven sediment resuspension and transport in estuaries[J]. Reviews of Geophysics, 52 (1): 77-117. doi: 10.1002/2013RG000437 Jeng D S. 2003. Wave-induced sea floor dynamics[J]. Applied Mechanics Reviews, 56(4): 407. doi: 10.1115/1.1577359 Hochreiter S, Schmidhuber J. 1997. Long short-term memory[J]. Neural Computation, 9 (8): 1735-1780. doi: 10.1162/neco.1997.9.8.1735 Huang C C, Chang M J, Lin G F, et al. 2021. Real-time forecasting of suspended sediment concentrations reservoirs by the optimal integration of multiple machine learning techniques[J]. Journal of Hydrology: Regional Studies, 34: 100804. doi: 10.1016/j.ejrh.2021.100804 Kaveh K, Kaveh H, Bui M D, et al. 2020. Long short-term memory for predicting daily suspended sediment concentration[J]. Engineering with Computers, 37 (1): 2013-2027. Liu Y H, Fang R K, Sun Y C, et al. 2021. Machine learning based model for warning of regional landslide disasters[J]. Journal of Engineering Geology, 29 (1): 116-124. doi: 10.1088/1755-1315/783/1/012074 Maa P Y, Kwon J I. 2007. Using ADV for cohesive sediment settling velocity measurements[J]. Estuarine Coastal & Shelf Science, 73(1-2): 351-354. http://www.researchgate.net/profile/Jerome_Maa/publication/228907015_Using_ADV_for_cohesive_sediment_settling_velocity_measurements/links/56254e1b08ae4d9e5c4bb259.pdf Maanen B V, Coco G, Bryan K R, et al. 2010. The use of artificial neural networks to analyze and predict alongshore sediment transport[J]. Copernicus Publications, 17 (5): 395-404. http://www.onacademic.com/detail/journal_1000040545937810_f6e5.html Mohammad Z K, Amin M M, Meysam A, et al. 2020. On the complexities of sediment load modeling using integrative machine learning: Application of the great river of Loíza in Puerto Rico[J]. Journal of Hydrology(Amsterdam), 585: 124759. Mohammad Z K, Özgür K, Jan A, et al. 2016. Evaluation of data driven models for river suspended sediment concentration modeling[J]. Journal of Hydrology, 535 : 457-472. doi: 10.1016/j.jhydrol.2016.02.012 Rumelhart D E, Hinton G E, Williams R J. 1986. Learning representations by back-propagating errors[J]. Nature, 323(6088): 533-536. doi: 10.1038/323533a0 Srivastava N, Hinton G, Krizhevsky A, et al. 2014. Dropout: A simple way to prevent neural networks from overfitting[J]. Journal of Machine Learning Research, 15 (1): 1929-1958. http://faculty.dbmi.pitt.edu/day/Bioinf2132-advanced-Bayes-and-R/index.php?path=previousDocuments/Bioinf2132-documents-2016/2016-12-15/&download=JMLRdropout.pdf Vapnik V, Golowich S E, Smola A. 1997. Support vector method for function approximation, regression estimation, and signal processing[J]. Advances in Neural Information Processing Systems, 9(2008): 281-287. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.41.3139&rep=rep1&type=pdf Xu X B, Xu G H, Yang J J, et al. 2021. Field observation of the wave-induced pore pressure response in a silty soil seabed[J]. Geo-Marine Letters, 41(1): 13. doi: 10.1007/s00367-020-00680-6 Xue C. 1993. Historical changes in the Yellow River delta, China[J]. Marine Geology, 113(3-4): 321-330. doi: 10.1016/0025-3227(93)90025-Q Yan H, Li S H, Wu L Z. 2019. Landslide displacement prediction based on multiple data-driven model methods[J]. Journal of Engineering Geology, 27 (2): 459-465. http://en.cnki.com.cn/Article_en/CJFDTotal-GCDZ201902028.htm Zhang S T, Jia Y G, Wen M Z, et al. 2017. Vertical migration of fine-grained sediments from interior to surface of seabed driven by seepage flows-'sub-bottom sediment pump action'[J]. Journal of Ocean University of China, 16 (1): 15-24. doi: 10.1007/s11802-017-3042-0 Zhang S T, Jia Y G, Liu X L, et al. 2016. Feature and mechanism of sediment dynamic changing processes in the modern Yellow River delta[J]. Marine Geology and Quaternary Geology, 36 (6): 33-44. http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYDZ201606006.htm Zhang S T, Jia Y G, Zhang Y Q, et al. 2018. In situ observations of wave pumping of sediments in the Yellow River Delta with a newly developed benthic chamber[J]. Marine Geophysical Research, 39 (4): 463-474. doi: 10.1007/s11001-018-9344-9 杜星, 孙永福, 宋玉鹏, 等. 2020. 基于MPL神经网络的地震作用下砂土液化评估及预测[J]. 工程地质学报, 28 (6): 1425-1432. doi: 10.13544/j.cnki.jeg.2019-321 刘艳辉, 方然可, 苏永超, 等. 2021. 基于机器学习的区域滑坡灾害预警模型研究[J]. 工程地质学报, 29 (1): 116-124. doi: 10.13544/j.cnki.jeg.2020-533 鄢好, 李绍红, 吴礼舟. 2019. 联合多种数据驱动建模方法的滑坡位移预测研究[J]. 工程地质学报, 27 (2): 459-465. doi: 10.13544/j.cnki.jeg.2017-485 杨作升. 1993. 埕岛油田勘探开发海洋环境[M]. 青岛: 青岛海洋大学出版社. 张少同, 贾永刚, 刘晓磊, 等. 2016. 现代黄河三角洲沉积物动态变化过程的特征与机理[J]. 海洋地质与第四纪地质, 36 (6): 33-44. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201606006.htm -