重复剪切作用下泥质充填结构面剪切力学特性试验研究

李冠野 邓华锋 李建林 徐鹏飞 王文东 冯云杰

李冠野, 邓华锋, 李建林, 等. 2022. 重复剪切作用下泥质充填结构面剪切力学特性试验研究[J]. 工程地质学报, 30(2): 374-382. doi:10. 13544/j.cnki.jeg.2021-0440
引用本文: 李冠野, 邓华锋, 李建林, 等. 2022. 重复剪切作用下泥质充填结构面剪切力学特性试验研究[J]. 工程地质学报, 30(2): 374-382. doi:10. 13544/j.cnki.jeg.2021-0440
Li Guanye, Deng Huafeng, Li Jianlin, et al. 2022. Experimental research on shear characteristics of mud-filled structural surface under repeated shearing[J]. Journal of Engineering Geology, 30(2): 374-382. doi: 10.13544/j.cnki.jeg.2021-0440
Citation: Li Guanye, Deng Huafeng, Li Jianlin, et al. 2022. Experimental research on shear characteristics of mud-filled structural surface under repeated shearing[J]. Journal of Engineering Geology, 30(2): 374-382. doi: 10.13544/j.cnki.jeg.2021-0440

重复剪切作用下泥质充填结构面剪切力学特性试验研究

doi: 10.13544/j.cnki.jeg.2021-0440
基金项目: 

国家自然科学基金 U2034203

国家自然科学基金 51679127

湖北省自然科学基金创新群体项目 2020CFA049

三峡大学2019级硕士学位论文培优基金项目 2021SSPY022

详细信息
    作者简介:

    李冠野(1996-),男,硕士生,主要从事岩土工程方面的研究工作. E-mail:201908521321025@ctgu.edu.cn

    通讯作者:

    邓华锋(1979-),男,博士,教授,博士生导师,主要从事岩土工程方面的科研与教学工作. E-mail:dhf8010@ctgu.edu.cn

  • 中图分类号: P642.3

EXPERIMENTAL RESEARCH ON SHEAR CHARACTERISTICS OF MUD-FILLED STRUCTURAL SURFACE UNDER REPEATED SHEARING

Funds: 

the National Natural Science Foundation of China U2034203

the National Natural Science Foundation of China 51679127

the Hubei Provincial Natural Science Foundation of Innovation Group Project 2020CFA049

the Research Fund for Excellent Dissertation of China Three Gorges University 2021SSPY022

  • 摘要: 结构面的力学特性直接关系工程岩体的变形稳定,而充填物对结构面的力学特性存在较大的影响。为了准确地量化充填前后结构面剪切性能的变化,以三峡库区典型库岸边坡节理岩体为研究对象,采用劈裂法制备了人工节理,按照充填度100%进行考虑,设计进行了充填前、后结构面的重复剪切试验。结果表明:(1)基于重复剪切过程中结构面抗剪性能劣化趋稳的变化规律,提出了一种单试件充填前、后重复剪切的试验方法,并提出了量化分析充填物对结构面影响程度的试验流程和数据处理方法,可以比较准确地确定充填物对结构面抗剪性能的影响;(2)泥质充填后结构面的抗剪性能劣化趋势明显,不同法向应力下的降幅在38.51% ~54.82%之间,而且,法向应力越大,降低幅度越大;(3)在重复剪切过程中,泥质充填结构面的抗剪强度呈现先增大、再减小趋稳的非线性变化规律,主要与剪切过程中泥质充填物的变少、变薄、变光滑,以及结构面出露面积增多、磨损,凹陷位置被岩屑和土填充有关。相关试验方法和思路可为充填结构面剪切性能分析提供较好的参考。
  • 图  1  重复剪切作用下结构面剪应力-剪切变形曲线

    Figure  1.  Stress-shear deformation curves of structural surface under repeated shear tests

    图  2  典型库岸边坡泥质充填节理岩体

    Figure  2.  Mud-filled jointed rock mass of reservoir bank slope

    图  3  ST500三维非接触式表面轮廓仪

    Figure  3.  ST500 three-dimensional non-contact surface profiler

    图  4  典型节理试样及扫描图

    a. 节理试样;b. 结构面扫描图

    Figure  4.  Typical jointed sample and scanning image

    图  5  YZW-1000型微机控制电动直剪仪

    Figure  5.  YZW-1000 microcomputer controlled electric direct shear instrument

    图  6  典型重复剪切下结构面剪应力-剪切位移曲线图

    a. 法向应力1.0 MPa; b. 法向应力1.5 MPa; c. 法向应力2.0 MPa; d. 法向应力2.5 MPa

    Figure  6.  Shear stress-shear displacement curve of structure surface under typical repeated shearing

    图  7  典型充填结构面试样

    Figure  7.  Typical filling structure surface sample

    图  8  充填结构面重复剪切作用下剪应力-剪切位移曲线图

    a. 法向应力1.0 MPa;b.法向应力1.5 MPa; c. 法向应力2.0 MPa; d. 法向应力2.5 MPa

    Figure  8.  Shearing stress-shearing displacement curve diagram under repeated shearing of filling structure surface

    图  9  充填前、后结构面抗剪强度变化曲线

    Figure  9.  Change curve of shear strength of structural surface before and after filling

    图  10  单次剪切作用下抗剪强度变化柱状图

    Figure  10.  Histogram of single shear strength change

    图  11  1.5 MPa法向应力下结构面形态照片

    a. 充填结构面图; b. 1次剪切后; c. 2次剪切后;d. 3次剪切后; e. 4次剪切后; f. 5次剪切后

    Figure  11.  Schematic diagram of structural surface morphology under 1.5 MPa normal stress

    图  12  2.5 MPa法向应力下结构面形态照片

    a. 充填结构面; b. 1次剪切后; c. 2次剪切后; d. 3次剪切后; e. 4次剪切后; f. 5次剪切后

    Figure  12.  Schematic diagram of structural surface morphology under 2.5 MPa normal stress

    图  13  充填物与结构面出露面积占比变化图

    a. 法向应力1.5 MPa; b. 法向应力2.5 MPa

    Figure  13.  Changes in the proportion of the exposed area of the filling material and the structural surface

    表  1  泥质充填物参数表

    Table  1.   Parameter table of argillaceous filling

    比重
    /g·cm-3
    液限
    /%
    塑限
    /%
    最大干密度
    /g·cm-3
    内摩擦角
    /(°)
    黏聚力
    /kPa
    1.73 28.80 17.23 1.70 21.87 30.55
    下载: 导出CSV

    表  2  单次剪切作用下抗剪强度变化值

    Table  2.   Change value of shear strength under single shear

    剪切次数 法向应力/MPa
    1.0 1.5 2.0 2.5
    1 0.265 0.278 0.578 0.878
    2 -0.094 -0.032 -0.119 -0.173
    3 -0.036 -0.031 0.116 0.151
    4 0.165 0.171 0.016 0.047
    5 0.006 0.037 0.021 0.031
    正值说明强度降低,负值说明强度上升
    下载: 导出CSV
  • Barton N, Choubey V. 1977. The shear strength of rock joints in theory and practice[J]. Rock Mechanics, 10(1): 1-54. doi: 10.1007/BF01261801
    Cao S C, Huang Z Q, Wu Q, et al. 2019. Experimental study on characteristic strength characteristics of slip zone of the giant creep landslide[J]. Journal of Engineering Geology, 27(2): 341-349. https://en.cnki.com.cn/Article_en/CJFDTotal-GCDZ201902015.htm
    Chen S J, Zhu W C, Wang C Y, et al. 2017. Review of research progresses of the quantifying joint roughness coefficient[J]. Chinese Journal of Theorectical and Applied Mechanics, 49(2): 239-256. doi: 10.6052/0459-1879-16-255
    Chen Z F, Xiang J, Fan W C, et al. 2019. Influence of different filling degrees on failure mechanism of rock joint[J]. Chinese Sciencepaper, 14(6): 614-619.
    Deng H F, Xiao Y, Li J L, et al. 2018. Degradation laws of joint strength and micro-morphology underrepeated shear tests[J]. Chinese Journal of Geotechnical Engineering, 40(S2): 183-188. http://manu31.magtech.com.cn/Jwk_ytgcxb/EN/abstract/abstract17584.shtml
    Du S G, Huang M, Luo Z Y, et al. 2010. Similar material study of mechanical prototype test of rock structural plane[J]. Chinese Journal of Rock Mechanics and Engineering, 29(11): 2263-2270. http://rockmech.whrsm.ac.cn/EN/Y2010/V29/I11/2263
    Hu R L, Li X, Wang Y, et al. 2020. Research on engineering geomechanical and structural effect of soil-rock mixture[J]. Journal of Engineering Geology, 28(2): 255-281. doi: 10.13544/j.cnki.jeg.2020-077
    Indraratna B, Welideniya H S, Browm E T. 2005. A shear strength model for idealized infilled joints under constant normal stiffness[J]. Géotechnique, 55(3): 215-226. doi: 10.1680/geot.2005.55.3.215
    Jiao F, Guo B H, Zhai M L. 2018. Empirical formula for shear strength of marble joints infilled with sands[J]. Rock and Soil Mechanics, 39(11): 4102-4108. doi: 10.16285/j.rsm.2017.2403
    Ladanyi B, Archambault G. 1977. Shear strength and deformability of filled indented joints[C]//Proceedings of International Symposium on Geotechnics of Structurally Complex Formations. Capri, Italy: [s. n. ]: 317-326.
    Oliveira D A F, Indraratna B, Nemcik J. 2009. Critical review on shear strength models for soil-infilled joints[J]. Geomechanics and Geoengineering, 4(3): 237-244. doi: 10.1080/17486020903128564
    Otsu N. 1979. A threshold selection method from Gray-Level histogram[J]. IEEE Trans Syst Man Cybern, 9(1): 62-66. doi: 10.1109/TSMC.1979.4310076
    Papaliangas T, Hencher S R, Lumsden A C, et al. 1993. The effect of frictional fill thickness on the shear strength of rock discontinuities[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 30(2): 81-91. https://www.sciencedirect.com/science/article/abs/pii/014890629390702F
    Phien-Wej N, Shrestha U B, Rantucci G. 1990. Effect of infill thickness on shear behavior of rock joints[C]//International symposium on rock joints: [s. n. ]
    Shi L, Cai M F, Zhao J. 2012. Fracture mechanism and experiment of infilled rock joints[J]. Journal of University of Science and Technology Beijing, 34(3): 253-259. doi: 10.13374/j.issn1001-053x.2012.03.001
    Sun F T, She C X, Wan L T. 2014. A peak shear strength model for cement filled rock joints[J]. Chinese Journal of Rock Mechanics and Engineering, 33(12): 2481-2489. doi: 10.13722/j.cnki.jrme.2014.12.013
    Tang M G, Yang H, Xu Q, et al. 2019. Permeability and parameters of landslide bodies in Three Gorges Reservoir Area[J]. Journal of Engineering Geology, 27(2): 325-332. doi: 10.13544/j.cnki.jeg.2018-011
    The National Standard Compilation Group of People's Republic of China. 2013. Engineering rock mass test method standard(GB/T 50266-2013)[S]. Beijing: China Planning Press.
    Wang L Q, Zhu L F, Zheng L B, et al. 2021. Shear test of bolted joint rock messes considering joint roughness[J]. China Journal of Highway and Transport, 34(6): 38-47.
    Wei J H, Wang W C, Yang Y Y, et al. 2017. Study on the influence of filling on mechanical properties of structural surface under repeated shear condition[J]. Journal of Engineering Geology, 25(6): 1482-1490. doi: 10.13544/j.cnki.jeg.2017.06.011
    Xia C C, Song Y L, Tang Z C, et al. 2012. Shear strength and morphology characteristic evolution of joint surface under cyclic loads[J]. Journal of Central South University(Science and Technology), 43(9): 3589-3594. https://www.researchgate.net/publication/289293813_Shear_strength_and_morphology_characteristic_evolution_of_joint_surface_under_cyclic_loads
    Xie Q, Ning Y, Wang J J, et al. 2019. Study on shear mechanical properties of rock-like joints with regular roughness[J]. Journal of Xi'an University of Architecture and Technology(Natural Science Edition), 51(5): 635-642.
    Xiong Z Q, Jiang Q, Gong Y H, et al. 2015. A method for preparing natural joints of rock mass based on 3D scanning and printing techniques and its experimental validation[J]. Rock and Soil Mechanics, 36(6): 1557-1565. https://en.cnki.com.cn/Article_en/CJFDTOTAL-YTLX201506005.htm
    Xu J, Lei J, Liu Y X, et al. 2019. Experimental study on shear behavior of joints filled with different materials[J]. Rock and Soil Mechanics, 40(11): 4129-4137. http://ytlx.whrsm.ac.cn/EN/Y2019/V40/I11/4129
    Zhan J L, Lei G H, Shi J Y, et al. 2007. Effect of effective shearing area on result of direct shear tests[J]. Journal of Hohai University(Natural Science), 35(2): 213-216. https://www.semanticscholar.org/paper/Effect-of-effective-shearing-area-on-result-of-Da-peng/fd6278924208640e00862c4b2651d58c9eb08285
    Zhang Q Z, Wu C Z, Jang B A, et al. 2019. Shear behavior of greenschist along foliation plane considering anisotropy[J]. International Journal of Earth Sciences, 108(5): 1755-1761. doi: 10.1007/s00531-019-01727-5
    Zhou H, Cheng G T, Zhu Y, et al. 2019. Anisotropy of shear characteristics of rock joint based on 3D carving technique[J]. Rock and Soil Mechanics, 40(1): 118-126.
    Zhou M L, Li J L, Luo Z S, et al. 2021. Impact of water-rock interaction on the pore structures of red-bed soft rock[J]. Scientific Reports, 11(1): 7398-7413. doi: 10.1038/s41598-021-86815-w
    曹世超, 黄志全, 吴琦, 等. 2019. 巨型蠕滑滑坡滑带土特征强度特性试验研究[J]. 工程地质学报, 27(2): 341-349. doi: 10.13544/j.cnki.jeg.2018-134
    陈世江, 朱万成, 王创业, 等. 2017. 岩体结构面粗糙度系数定量表征研究进展[J]. 力学学报, 49(2): 239-256. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201702001.htm
    陈占锋, 向娟, 范文臣, 等. 2019. 不同充填度对节理剪切破坏机理的影响[J]. 中国科技论文, 14(6): 614-619. doi: 10.3969/j.issn.2095-2783.2019.06.006
    邓华锋, 肖瑶, 李建林, 等. 2018. 重复剪切作用下节理强度和形貌特征劣化规律[J]. 岩土工程学报, 40(S2): 183-188. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2018S2039.htm
    杜时贵, 黄曼, 罗战友, 等. 2010. 岩石结构面力学原型试验相似材料研究[J]. 岩石力学与工程学报, 29(11): 2263-2270. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201011014.htm
    胡瑞林, 李晓, 王宇, 等. 2020. 土石混合体工程地质力学特性及其结构效应研究[J]. 工程地质学报, 28(2): 255-281. doi: 10.13544/j.cnki.jeg.2020-077
    焦峰, 郭保华, 翟明磊. 2018. 砂土充填大理岩节理的剪切强度经验公式[J]. 岩土力学, 39(11): 4102-4108. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201811024.htm
    史玲, 蔡美峰, 赵坚. 2012. 充填节理破坏机理及实验[J]. 北京科技大学学报, 34(3): 253-259. https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201203003.htm
    孙辅庭, 佘成学, 万利台. 2014. 充填水泥浆岩石节理峰值剪切强度模型[J]. 岩石力学与工程学报, 33(12): 2481-2489. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201412013.htm
    汤明高, 杨何, 许强, 等. 2019. 三峡库区滑坡土体渗透特性及参数研究[J]. 工程地质学报, 27(2): 325-332. doi: 10.13544/j.cnki.jeg.2018-011
    王亮清, 朱林锋, 郑罗斌, 等. 2021. 考虑节理粗糙度的锚固节理岩体剪切试验[J]. 中国公路学报, 34(6): 38-47. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202106005.htm
    魏继红, 王武超, 杨圆圆, 等. 2017. 重复剪切作用下充填物对结构面力学性质的影响[J]. 工程地质学报, 25(6): 1482-1490. doi: 10.13544/j.cnki.jeg.2017.06.011
    夏才初, 宋英龙, 唐志成, 等. 2012. 反复直剪试验节理强度与粗糙度变化的研究[J]. 中南大学学报(自然科学版), 43(9): 3589-3594. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201209040.htm
    谢强, 宁越, 王晶晶, 等. 2019. 具有规则粗糙度的类岩石节理剪切力学性质试验研究[J]. 西安建筑科技大学学报(自然科学版), 51(5): 635-642. https://www.cnki.com.cn/Article/CJFDTOTAL-XAJZ201905004.htm
    熊祖强, 江权, 龚彦华, 等. 2015. 基于三维扫描与打印的岩体自然结构面试样制作方法与剪切试验验证[J]. 岩土力学, 36(6): 1557-1565. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201506005.htm
    许江, 雷娇, 刘义鑫, 等. 2019. 充填物性质影响结构面剪切特性试验研究[J]. 岩土力学, 40(11): 4129-4137. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201911002.htm
    詹金林, 雷国辉, 施建勇, 等. 2007. 有效剪切面积对直剪试验结果的影响分析[J]. 河海大学学报(自然科学版), 35(2): 213-216. doi: 10.3321/j.issn:1000-1980.2007.02.021
    中华人民共和国国家标准编写组. 2013. 工程岩体试验方法标准(GB/T 50266-2013)[S]. 北京: 中国计划出版社.
    周辉, 程广坦, 朱勇, 等. 2019. 基于3D雕刻技术的岩体结构面剪切各向异性研究[J]. 岩土力学, 40(1): 118-126. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201901009.htm
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  112
  • HTML全文浏览量:  14
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-05
  • 修回日期:  2021-12-18
  • 刊出日期:  2022-04-25

目录

    /

    返回文章
    返回