含天然气水合物土水-力特性联合测试装置及应用

杨德欢 颜梦秋 陆地 颜荣涛 韦昌富 田慧会

杨德欢, 颜梦秋, 陆地, 等. 2021. 含天然气水合物土水-力特性联合测试装置及应用[J].工程地质学报, 29(6): 1722-1732. doi: 10.13544/j.cnki.jeg.2021-0466
引用本文: 杨德欢, 颜梦秋, 陆地, 等. 2021. 含天然气水合物土水-力特性联合测试装置及应用[J].工程地质学报, 29(6): 1722-1732. doi: 10.13544/j.cnki.jeg.2021-0466
Yang Dehuan, Yan Mengqiu, Lu Di, et al. 2021. Introduction and application of hydro-mechanical united experiment apparatus for hydrate-bearing sediments[J].Journal of Engineering Geology, 29(6): 1722-1732. doi: 10.13544/j.cnki.jeg.2021-0466
Citation: Yang Dehuan, Yan Mengqiu, Lu Di, et al. 2021. Introduction and application of hydro-mechanical united experiment apparatus for hydrate-bearing sediments[J].Journal of Engineering Geology, 29(6): 1722-1732. doi: 10.13544/j.cnki.jeg.2021-0466

含天然气水合物土水-力特性联合测试装置及应用

doi: 10.13544/j.cnki.jeg.2021-0466
基金项目: 

国家自然科学基金 11962004

国家自然科学基金 51639008

广西自然科学基金 2017GXNSFAA198215

详细信息
    作者简介:

    杨德欢(1990-),男,博士生,主要从事含水合物沉积物力学特性方面的研究. E-mail:ydh9008@126.com

    通讯作者:

    颜荣涛(1984-),男,博士,教授,硕士生导师,主要从事土力学的教学工作和含水合物土力学特性的研究工作. E-mail:yrt301@163.com

  • 中图分类号: P744.4

INTRODUCTION AND APPLICATION OF HYDRO-MECHANICAL UNITED EXPERIMENT APPARATUS FOR HYDRATE-BEARING SEDIMENTS

Funds: 

the National Natural Science Foundation of China 11962004

the National Natural Science Foundation of China 51639008

the Natural Science Foundation of Guangxi 2017GXNSFAA198215

  • 摘要: 海底天然气水合物(以下简称水合物)的开采会劣化储层的力学性质,威胁钻井平台、破坏开采井甚至可能诱发地质灾害。为探究含水合物沉积物的力学特性及开采扰动下水合物储层的力学强度劣化机理,本文搭建了一套含天然气水合物土水-力特性联合测试装置,主要包括:压力室、压力控制系统,注/除气系统,温度控制系统,数据采集及人机交互管理系统。该装置可实现不同条件下含水合物沉积物试样的合成,并可开展渗透试验、等向压缩试验、以及不同应力路径下三轴压缩试验测试。以细砂作为赋存介质,采用富气法制备含天然气水合物沉积物试样,对其进行了一系列水-力特性试验测试,并对结果进行了简要地分析。这些试验结果证实了装置测试含水合物沉积物水-力学特性的功能和可靠性。
  • 图  1  实验装置示意图

    G1. 气瓶, G2. 压力室; S. 试样;L1. 围压泵, L2. 轴压泵, L3. 反压泵, L4. 回压泵;B1. 真空泵, B2. 回压阀;W1~W2. 恒温水浴槽;C1. 储气罐, C2~C3. 活塞容器, C4~C5. 高压容器;D1. 干燥罐, D2. 气液分离器, D3. 数据采集器;E. 承载板;M. 计算机

    Figure  1.  Schematic diagram for experimental apparatus

    图  2  实验装置体变测试标定试验

    Figure  2.  Calibration tests for measuring volumetric deformation of hydrate-bearing sediments

    图  3  实验装置测试重复性评估

    Figure  3.  Evaluation for the repeatability of experimental apparatus

    图  4  GHBS的渗透系数随水合物饱和度的变化

    Figure  4.  Change in permeability of GHBS with hydrate saturations

    图  5  不同水合物饱和度下GHBS的等向压缩曲线

    Figure  5.  Isotropic compression curves of GHBS with various hydrate saturations

    图  6  加载方式和加载速率对GHBS应力-应变曲线的影响

    Figure  6.  Effects of loading type and loading rate on the stress-strain curves for GHBS

    图  7  有效围压、水合物饱和度和饱和条件对剪切行为的影响

    Figure  7.  Effects of effective confining pressure, hydrate saturation and saturation condition on the stress strain curves of GHBS

    图  8  温度和孔压对GHBS应力-应变曲线的影响

    Figure  8.  Effects of temperature and pore pressure on stress-strain curves for GHBS

    图  9  水合物分解诱导轴向应变、体变和孔压的变化曲线

    Figure  9.  Changes in axial strain, volumetric strain and pore pressure versus time for GHBS induced by hydrate dissociation

  • Aoki K,Ogata Y,Jiang Y. 2004. Compression strength and deformation behaviour of methane hydrate specimen[J]. Journal of the Mining and Materials Processing Institute of Japan,120 (12): 645-652.
    Deusner C, Gupta S, Xie X G, et al. 2019. Strain rate-dependent hardening-softening characteristics of gas hydrate-bearing sediments[J]. Geochemistry, Geophysics, Geosystems, 20 (11): 4885-4905. doi: 10.1029/2019GC008458
    Ebinuma T, Kamata Y, Minagawa H, et al. 2005. Mechanical properties of sandy sediment containing methane hydrate[C]//Proceedings of The Fifth International Conference on Gas Hydrates. [S.L. ]: 958-961.
    Ghiassian H, Grozic J. 2013. Strength behavior of methane hydrate bearing sand in undrained triaxial testing[J]. Marine and Petroleum Geology, 43 : 310-319. doi: 10.1016/j.marpetgeo.2013.01.007
    Hyodo M, Nakata Y, Yoshimoto N, et al. 2005. Basic research on the mechanical behavior of methane hydrate-sediments mixture[J]. Soils and Foundations, 45 (1): 75-85. http://www.researchgate.net/publication/279937652_Basic_research_on_the_mechanical_behavior_of_methane_hydrate-sediments_mixture
    Hyodo M, Yoneda J, Yoshimoto N, et al. 2013. Mechanical and dissociation properties of methane hydrate-bearing sand in deep seabed[J]. Soils and Foundations, 53 (2): 299-314. doi: 10.1016/j.sandf.2013.02.010
    Kong L, Liu W Z, Yuan Q M, et al. 2019. Triaxial tests on gassy sandy soil under constant shear stress paths[J]. Rock and Soil Mechanics, 40 (9): 3319-3326.
    Kumar A, Sakpal T, Roy S, et al. 2015. Methane hydrate formation in a test sediment of sand and clay at various levels of water saturation[J]. Canadian Journal of Chemistry, 93 (8): 874-881. doi: 10.1139/cjc-2014-0537
    Lee J Y, Santamarina J C, Ruppel C. 2010. Volume change associated with formation and dissociation of hydrate in sediment[J]. Geochemistry Geophysics Geosystems, 11 (3): 1-13. http://www.researchgate.net/profile/J_Santamarina/publication/45795686_Volume_change_associated_with_formation_and_dissociation_of_hydrate_in_sediment/links/554752e10cf24107d3983611.pdf
    Lei L, Seol Y, Choi J H, et al. 2019. Pore habit of methane hydrate and its evolution in sediment matrix-laboratory visualization with phase-contrast micro-CT[J]. Marine and Petroleum Geology, 104 : 451-467. doi: 10.1016/j.marpetgeo.2019.04.004
    Li L D, Cheng Y Y, Sun X J, et al. 2012. Experimental sample preparation and mechanical properties study of hydrate bearing sediments[J]. Journal of China University of Petroleum, 36 (4): 97-101. http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYDX201204020.htm
    Li S D, Sun Y M, Chen W C, et al. 2019. Analyses of gas production methods and offshore production tests of natural gas hydrates[J]. Journal of Engineering Geology, 27 (1): 55-68. http://en.cnki.com.cn/Article_en/CJFDTotal-GCDZ201901007.htm
    Li Y H, Song Y C, Liu W G, et al. 2012. Effects of temperature and strain rate on strength of hydrate sediment[J]. Natural Gas Exploration & Development, 35 (1): 50-53. http://www.cnki.com.cn/Article/CJFDTotal-TRKT201201012.htm
    Li Y H, Song Y C, Yu F, et al. 2011. Effect of confining pressure on mechanical behavior of methane hydrate-bearing sediments[J]. Petroleum Exploration and Development, 38 (5): 637-640. doi: 10.1016/S1876-3804(11)60061-X
    Li Y H. 2013. Study on strength and deformation behaviors of methane hydrate-bearing sediments[D]. Dalian: Dalian University of Technology.
    Lijith K P, Malagar B R C, Singh D N. 2019. A comprehensive review on the geomechanical properties of gas hydrate bearing sediments[J]. Marine and Petroleum Geology, 104 : 270-285. doi: 10.1016/j.marpetgeo.2019.03.024
    Liu C L, Li Y L, Sun J Y, et al. 2017. Gas hydrate production test: from experimental simulation to field practice[J]. Marine Geology & Quaternary Geology, 37 (5): 12-26. http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYDZ201705002.htm
    Liu Z C, Wei H Z, Li P, et al. 2017. An easy and efficient way to evaluate mechanical properties of gas hydrate-bearing sediments: The direct shear test[J]. Journal of Petroleum Science and Engineering, 149 : 56-64. doi: 10.1016/j.petrol.2016.09.040
    Luo T T, Li Y H, Madhusudhan B N, et al. 2020. Comparative analysis of the consolidation and shear behaviors of CH4 and CO2 hydrate-bearing silty sediments[J]. Journal of Natural Gas Science and Engineering, 75: 103157. doi: 10.1016/j.jngse.2020.103157
    Madhusudhan B N, Clayton C R I, Priest J A, et al. 2019. The effects of hydrate on the strength and stiffness of some sands[J]. Journal of Geophysical Research: Solid Earth, 124 (1): 65-75. doi: 10.1029/2018JB015880
    Masui A, Haneda H, Ogata Y, et al. 2005. Effects of methane hydrate formation on shear strength of synthetic methane hydrate sediments[C]//Internationa1 Society of Offshore and Polar Engineering, et al. Proceedings of the fifteenth internationa1 offshore and polar engineering conference: 1-5, 11.
    Pinkert S. 2017. Rowe's stress-dilatancy theory for hydrate-bearing sand[J]. International Journal of Geomechanics, 17(1): 06016008. doi: 10.1061/(ASCE)GM.1943-5622.0000682
    Priest J A, Hayley J L. 2019. Strength of laboratory synthesized hydrate-bearing sands and their relationship to natural hydrate-bearing sediments[J]. Journal of Geophysical Research: Solid Earth, 124 (12): 12556-12575. doi: 10.1029/2019JB018324
    Shi Y H, Zhang X H, Lu X B, et al. 2015. Experimental study on the static mechanical properties of hydrate-bearing silty-clay in the China sea[J]. Chinese Journal of Theoretical and Applied Mechanics, 47 (3): 521-528. http://d.wanfangdata.com.cn/Periodical/lxxb201503016
    Song Y C, Yu F, Li Y H, et al. 2010. Mechanical property of artificial methane hydrate under triaxial compression[J]. Journal of Natural Gas Chemistry, 19 (3): 246-250. doi: 10.1016/S1003-9953(09)60073-6
    Song Y C, Zhu Y M, Liu W G, et al. 2014. Experimental research on the mechanical properties of methane hydrate-bearing sediments during hydrate dissociation[J]. Marine and Petroleum Geology, 51 : 70-78. doi: 10.1016/j.marpetgeo.2013.11.017
    Sultan N, Cochonat P, Foucher J P, et al. 2004. Effect of gas hydrates melting on seafloor slope instability[J]. Marine Geology, 213 (1): 379-401.
    Uchida T, Hirano T, Ebinuma T, et al. 1999. Raman spectroscopic determination of hydration number of methane hydrates[J]. Aiche Journal, 45 (12): 2641-2645. doi: 10.1002/aic.690451220
    Wang S Y, Lu X B, Zhang X H. 2009. Advances in the laboratory apparatus and research on mechanical properties of gas hydrate sediment[J]. Journal of Experimental Mechanics, 24 (5): 413-420. http://www.oalib.com/paper/1412699
    Wei C F, Yan R T, Tian H H, et al. 2020. Geotechnical problems in exploitation of natural gas hydrate: status and challenges[J]. Natural Gas Industry, 40 (8): 116-132.
    Winters W J, Waite W F, Mason D H, et al. 2007. Methane gas hydrate effect on sediment acoustic and strength properties[J]. Journal of Petroleum Science and Engineering, 56(1-3): 127-135. doi: 10.1016/j.petrol.2006.02.003
    Wu D M, Li G, Li X S, et al. 2017. Experimental investigation of permeability characteristics under different hydrate saturation[J]. Chemical Industry and Engineering Progress, 36 (8): 2916-2923. http://en.cnki.com.cn/Article_en/CJFDTotal-HGJZ201708024.htm
    Yan R T, Wei C F, Wei H Z, et al. 2012. Effect of hydrate formation on mechanical strength of hydrate-bearing sand[J]. Chinese Journal of Geotechnical Engineering, 34 (7): 1234-1240. http://www.researchgate.net/publication/288349201_Effect_of_hydrate_formation_on_mechanical_strength_of_hydrate-bearing_sand
    Yan R T, Zhao X Y, Yu M B, et al. 2018. Isotropic compression characteristics of calyey soil saturated by salty solution[J]. Rock and Soil Mechanics, 39 (1): 129-138. http://www.researchgate.net/publication/325169648_Isotropic_compression_characteristics_of_clayey_soil_saturated_by_salty_solution
    Yang J, Hassanpouryouzband A, Tohidi B, et al. 2019. Gas hydrates in permafrost: Distinctive effect of gas hydrates and ice on the geomechanical properties of simulated hydrate-bearing permafrost sediments[J]. Journal of Geophysical Research: Solid Earth, 124 (3): 2551-2563. doi: 10.1029/2018JB016536
    Ye J L, Qin X W, Xie W W, et al. 2020. The second natural gas hydrate production test in the South China Sea[J]. China Geology, 3 (2): 197-209. http://d.wanfangdata.com.cn/periodical/zgdz-e202002002
    Yoneda J, Oshima M, Kida M, et al. 2019. Consolidation and hardening behavior of hydrate-bearing pressure-core sediments recovered from the Krishna-Godavari Basin, offshore India[J]. Marine and Petroleum Geology, 108 : 512-523. doi: 10.1016/j.marpetgeo.2018.09.021
    Zhang X H, Luo D S, Lu X B, et al. 2018. Mechanical properties of gas hydrate-bearing sediments during hydrate dissociation[J]. Acta Mechanica Sinica, 34 (2): 266-274. doi: 10.1007/s10409-017-0699-y
    Zhang X H, Wang S Y, Li Q P, et al. 2010. Experimental study of mechanical properties of gas hydrate deposits[J]. Rock and Soil Mechanics, 31 (10): 3069-3074. http://d.wanfangdata.com.cn/Periodical/ytlx201010007
    Zhou J Z, Wei C F, Wei H Z, et al. 2020. Development and application of multi-functional triaxial test system for hydrate-bearing sediments[J]. Rock and Soil Mechanics, 41 (1): 342-352.
    孔亮, 刘文卓, 袁庆盟, 等. 2019. 常剪应力路径下含气砂土的三轴试验[J]. 岩土力学, 40 (9): 3319-3326. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201909004.htm
    李令东, 程远方, 孙晓杰, 等. 2012. 水合物沉积物试验岩样制备及力学性质研究[J]. 中国石油大学学报(自然科学版), 36 (4): 97-101. doi: 10.3969/j.issn.1673-5005.2012.04.018
    李守定, 孙一鸣, 陈卫昌, 等. 2019. 天然气水合物开采方法及海域试采分析[J]. 工程地质学报, 27 (1): 55-68. doi: 10.13544/j.cnki.jeg.2019-065
    李洋辉, 宋永臣, 刘卫国, 等. 2012. 温度和应变速率对水合物沉积物强度影响试验研究[J]. 天然气勘探与开发, 35 (1): 50-53. doi: 10.3969/j.issn.1673-3177.2012.01.011
    李洋辉, 宋永臣, 于锋, 等. 2011. 围压对含水合物沉积物力学特性的影响[J]. 石油勘探与开发, 38 (5): 637-640. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201105020.htm
    李洋辉. 2013. 天然气水合物沉积物强度及变形特性研究[D]. 大连: 大连理工大学.
    刘昌岭, 李彦龙, 孙建业, 等. 2017. 天然气水合物试采: 从实验模拟到场地实施[J]. 海洋地质与第四纪地质, 37 (5): 12-26. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201705002.htm
    石要红, 张旭辉, 鲁晓兵, 等. 2015. 南海水合物黏土沉积物力学特性试验模拟研究[J]. 力学学报, 47 (3): 521-528. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201503016.htm
    王淑云, 鲁晓兵, 张旭辉. 2009. 水合物沉积物力学性质的实验装置和研究进展[J]. 实验力学, 24 (5): 413-420. https://www.cnki.com.cn/Article/CJFDTOTAL-SYLX200905006.htm
    韦昌富, 颜荣涛, 田慧会, 等. 2020. 天然气水合物开采的土力学问题: 现状与挑战[J]. 天然气工业, 40 (8): 116-132. doi: 10.3787/j.issn.1000-0976.2020.08.009
    吴丹梅, 李刚, 李小森, 等. 2017. 不同水合物饱和度下渗透率变化特性的实验研究[J]. 化工进展, 36 (8): 2916-2923. https://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ201708024.htm
    颜荣涛, 韦昌富, 魏厚振, 等. 2012. 水合物形成对含水合物砂土强度影响[J]. 岩土工程学报, 34 (7): 1234-1240. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201207010.htm
    颜荣涛, 赵续月, 于明波, 等. 2018. 盐溶液饱和黏土的等向压缩特性[J]. 岩土力学, 39 (1): 129-138. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201801017.htm
    张旭辉, 王淑云, 李清平, 等. 2010. 天然气水合物沉积物力学性质的试验研究[J]. 岩土力学, 31 (10): 3069-3074. doi: 10.3969/j.issn.1000-7598.2010.10.007
    周家作, 韦昌富, 魏厚振, 等. 2020. 多功能水合物沉积物三轴试验系统的研制与应用[J]. 岩土力学, 41 (1): 342-352. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202001040.htm
  • 加载中
图(9)
计量
  • 文章访问数:  162
  • HTML全文浏览量:  19
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-13
  • 修回日期:  2021-10-01
  • 刊出日期:  2021-12-25

目录

    /

    返回文章
    返回