深部采掘扰动区线性切顶防冲护巷技术

李兵 贺虎 徐大连 罗武贤 朱金标

李兵, 贺虎, 徐大连, 等. 2021. 深部采掘扰动区线性切顶防冲护巷技术[J]. 工程地质学报, 29(4): 1131-1138. doi: 10.13544/j.cnki.jeg.2021-0534
引用本文: 李兵, 贺虎, 徐大连, 等. 2021. 深部采掘扰动区线性切顶防冲护巷技术[J]. 工程地质学报, 29(4): 1131-1138. doi: 10.13544/j.cnki.jeg.2021-0534
Li Bing, He Hu, Xu Dalian, et al. 2021. Linear roof cutting for rockburst prevention and roadway protection in deep mining disturbed area[J]. Journal of Engineering Geology, 29(4): 1131-1138. doi: 10.13544/j.cnki.jeg.2021-0534
Citation: Li Bing, He Hu, Xu Dalian, et al. 2021. Linear roof cutting for rockburst prevention and roadway protection in deep mining disturbed area[J]. Journal of Engineering Geology, 29(4): 1131-1138. doi: 10.13544/j.cnki.jeg.2021-0534

深部采掘扰动区线性切顶防冲护巷技术

doi: 10.13544/j.cnki.jeg.2021-0534
基金项目: 

国家自然科学基金 51974302

详细信息
    作者简介:

    李兵(1982-),男,学士,工程师,主要从事煤矿冲击地压防治研究. E-mail: 15996873848@139.com

    通讯作者:

    贺虎(1985-),男,博士,副教授,硕士生导师,主要从事煤矿冲击地压机理与防治研究. E-mail: hehu@cumt.edu.cn

  • 中图分类号: TD324

LINEAR ROOF CUTTING FOR ROCKBURST PREVENTION AND ROADWAY PROTECTION IN DEEP MINING DISTURBED AREA

Funds: 

the National Natural Science Foundation of China 51974302

  • 摘要: 采掘扰动是诱发冲击地压灾害的重要因素,深部采掘扰动区域则受冲击与巷道变形的双重威胁,针对该技术难题,本文研究了线性密集切顶防冲护巷技术。基于关键层理论分析了倾斜煤层关键层倾向破断结构特点,表明关键块B的空间状态是控制正在开采的工作面与迎采巷道矿压显现的关键,给出了采掘扰动工况下的最佳关键块断裂线位置。基于COMSOL模拟研究了不同装药直径下的应力峰值分布规律,结果表明:爆破后应力以指数函数形式快速衰减,给出了不同装药直径下应力峰值分布的拟合公式;致裂半径与装药直径呈幂函数的正相关关系;以顶板岩石抗拉强度为指标值,确定了爆破孔直径对应的最优间距。现场设计实施了不同技术参数的切顶方案,结果表明,相比于传统的深孔爆破,线性密集切顶两钻孔之间能够形成贯通裂隙,从而控制关键层的破断方式,因此钻孔间距是影响防冲与护巷效果的关键参数。通过巷道围岩观测与微震监测,表明线性密集切顶技术能够有效减弱迎采巷道的围岩变形,同时降低正在开采的工作面矿压显现与冲击危险性,现场实践验证了理论与模拟结果,可为类似条件工程提供借鉴。
  • 图  1  回采工作面与迎采沿空掘巷平面布置示意图

    Figure  1.  Schematic location of the panel and adjacent gob-side roadway

    图  2  倾斜煤层开采后倾向关键层结构

    Figure  2.  Structure of the key strata after the extraction of inclined coal seam

    图  3  3种不同长度悬顶的顶底板移近曲线

    Figure  3.  The influence of key strata overhang length on the deformation of roadway

    图  4  线性切顶防冲护巷技术原理示意图

    Figure  4.  Schematic of the mechanism of linear roof cutting for rockburst prevention and roadway protection

    图  5  装药直径42mm应力峰值曲线

    Figure  5.  Curve of the stress peak with the 42mm charge diameter

    图  6  不同装药直径爆炸损伤范围拟合曲线

    Figure  6.  Fitting curve of the damage area with different charge diameter

    图  7  现场技术方案布置示意图

    Figure  7.  Schematic of the in-situ layout of roof cutting

    图  8  现场爆破实施效果图

    Figure  8.  In-situ photograph of roof cutting by blasting

    图  9  不同技术方案巷道变形监测数据

    Figure  9.  Monitoring of the deformation of 92608 headentry with different technical scheme

    图  10  线性密集切顶区域微震分布

    Figure  10.  Microseismic events distribution in the linear roof cutting area

    表  1  不同技术方案巷道(92608材料道)变形统计

    Table  1.   Measuring and statistic of the deformation of 92608 headentry with different technical schemes

    方案编号 巷道原尺寸/mm 巷道变形尺寸/mm 巷道剩余尺寸/mm
    中高 顶底移近量 两帮移近量 中高
    对比区 2600 4500 594 765 2006 3735
    1 2600 4500 600 440 2000 4060
    2 2600 4500 461 73 2139 4427
    3 2600 4500 375 9 2225 4491
    下载: 导出CSV
  • Cai W,Dou L M,Gong S Y,et al. 2019. A new seismic-based strain energy methodology for coal burst forecasting in underground coal mines[J]. International Journal of Rock Mechanics and Mining Sciences,123 : 1-11. http://www.sciencedirect.com/science/article/pii/S1365160918307962
    Chen S Y, Zhao B, Yuan Y, et al. 2021. Engineering experiment on gob-side entry retaining by roof cutting of deep mining face in Chengjiao coalmine[J]. Journal of Mining & Safety Engineering, 38 (1): 121-129. https://www.hindawi.com/journals/amse/2020/1961680/
    Dou L M, Mu Z L, Cao A Y, et al. 2021. Prevention technology of rockburst[M]. Xuzhou: China University of Mining and Technology Press.
    Guo Z B, Wang J, Cao T P, et al. 2016. Research on key parameters of gob-side entry retaining automatically formed by roof cutting and pressure release in thin coal seam mining[J]. Journal of China University of Mining & Technology, 45 (5): 879-885. http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGKD201605004.htm
    He J, Dou L M, Gong S Y, et al. 2015. Research on rock burst prevention technology of roof-cutting roadway in inclined thin coal seam[J]. Journal of China Coal Society, 40 (6): 1347-1352. http://www.researchgate.net/publication/282950352_Research_on_rock_burst_prevention_technology_of_roof-cutting_roadway_in_inclined_thin_coal_seam
    He M C, Chen S Y, Guo Z B, et al. 2017a. Control of surrounding rock structure for gob-side entry retaining by cutting roof to release pressure and its engineering application[J]. Journal of China University of Mining & Technology, 46 (5): 959-969. http://www.researchgate.net/publication/321676793_Control_of_surrounding_rock_structure_for_gob-side_entry_retaining_by_cutting_roof_to_release_pressure_and_its_engineering_application
    He M C, Gao Y B, Yang J, et al. 2017b. An energy-gathered roof cutting technique in no-pillar mining and its impact on stress variation in surrounding rocks[J]. Chinese Journal of Rock Mechanics and Engineering, 36 (6): 1314-1325. http://www.researchgate.net/publication/320163973_An_energy-gathered_roof_cutting_technique_in_no-pillar_mining_and_its_impact_on_stress_variation_in_surrounding_rocks
    He M C, Gao Y B, Yang J, et al. 2018a. Engineering experimentation of gob-side entry retaining formed by roof cutting and pressure release in a thick-seam fast-extracted mining face[J]. Rock and Soil Mechanics, 39 (1): 254-264. http://www.researchgate.net/publication/325169751_Engineering_experimentation_of_gob-side_entry_retaining_formed_by_roof_cutting_and_pressure_release_in_a_thick-seam_fast-extracted_mining_face
    He M C, Guo P F, Zhang X H, et al. 2018b. Directional pre-splitting of roadway roof based on the theory of bilateral cumulative tensile explosion[J]. Explosion and Shock Waves, 38 (4): 795-803. http://www.researchgate.net/publication/328553775_Directional_pre-splitting_of_roadway_roof_based_on_the_theory_of_bilateral_cumulative_tensile_explosion
    Hou C J, Wang X Y, Bai J B, et al. 2021. Basic theory and technology study of stability control for surrounding rock in deep roadway[J]. Journal of China University of Mining & Technology, 50 (1): 1-12. https://www.hindawi.com/journals/ace/2018/6275941/
    Huang W X, Wu H, Wang J, et al. 2019. A comparison study on excavation sequence of unsymmetrical loading tunnel in weak surrounding rock[J]. Journal of Engineering Geology, 27 (2): 277-285. http://en.cnki.com.cn/Article_en/CJFDTotal-GCDZ201902007.htm
    Meng L C, Xu R C, Wang A M, et al. 2020. Characteristics of strength and acoustic emission of granite and marble under uniaxial compression[J]. Journal of Engineering Geology, 28 (6): 1178-1185.
    Pu W L, Zhang G H, Bi Y W. 2014. The research on the key technology of directional fracture cutting top relief of narrow coal pillar along goaf roadway[J]. Industrial Safety and Environmental Protection, 40 (5): 45-47. http://en.cnki.com.cn/Article_en/CJFDTOTAL-GYAF201405014.htm
    Qian M G, Xu J L. 2019. Behaviors of strata movement in coal mining[J]. Journal of China Coal Society, 44 (4): 973-984.
    Sui W H, Wang D D, Sun Y J, et al. 2019. Mine hydrogeological structure and its responses to mining[J]. Journal of Engineering Geology, 27 (1): 21-28. http://en.cnki.com.cn/Article_en/CJFDTotal-GCDZ201901003.htm
    Wang J C, Wang Z H. 2015. Impact effect of dynamic load induced by roof in high-intensity mining face[J]. Chinese Journal of Rock Mechanics and Engineering, 34 (S2): 3987-3997. http://www.cnki.com.cn/Article/CJFDTotal-YSLX2015S2044.htm
    Wang M, Bai J B, Wang X Y, et al. 2012. The surrounding rock deformation rule and control technique of the roadway driven along goaf and heading for adjacent advancing coal face[J]. Journal of Mining & Safety Engineering, 29 (2): 197-202. http://en.cnki.com.cn/Article_en/CJFDTOTAL-KSYL201202009.htm
    Wang Q, Zhang P, Jiang Z H, et al. 2021. Automatic roadway formation method by roof cutting with high strength bolt-grouting in deep coal mine and its validation[J]. Journal of China Coal Society, 46 (2): 382-397.
    Xu J L. 2020. Research and progress of coal mine green mining in 20 years[J]. Coal Science and Technology, 48 (9): 1-15.
    Yu Y, Wang X Y, Xu G Z, et al. 2013. Dynamic sectional control technology of surrounding rock in gateway driving along goaf forward to mining face[J]. Coal Science and Technology, 41 (7): 43-46, 50. http://en.cnki.com.cn/Article_en/CJFDTOTAL-MTKJ201307012.htm
    Zhang N, Li X H, Gao M S. 2004. Pretensioned support of roadway driven along next gob and heading adjacent advancing coal face and its application[J]. Chinese Journal of Rock Mechanics and Engineering, 23 (12): 2100-2105. http://www.cqvip.com/Main/Detail.aspx?id=9935531
    Zhang P S, Zhang D, S Y, et al. 2019. Optical fiber monitoring technology for evolution characteristic of rock stratum deformation and failure in space of mining field[J]. Journal of Engineering Geology, 27 (2): 260-266. http://www.zhangqiaokeyan.com/academic-journal-cn_journal-engineering-geology_thesis/0201270243485.html
    Zhang X Y, He M C, Yang J, et al. 2020. An innovative non-pillar coal-mining technology with automatically formed entry: A case study[J]. Engineering, 6 (11): 1315-1329. doi: 10.1016/j.eng.2020.01.014
    Zhang Z Z, Bai J B, Chen Y, et al. 2016. Shallow-hole blasting mechanism and its application for gob-side entry retaining with thick and hard roof[J]. Chinese Journal of Rock Mechanics and Engineering, 35 (S1): 3008-3017. http://www.researchgate.net/publication/304880172_Shallow-hole_blasting_mechanism_and_its_application_for_gob-side_entry_retaining_with_thick_and_hard_roof
    陈上元, 赵波, 袁越, 等. 2021. 城郊矿深部工作面切顶留巷工程试验研究[J]. 采矿与安全工程学报, 38 (1): 121-129. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL202101014.htm
    窦林名, 牟宗龙, 曹安业, 等. 2021. 冲击矿压防治技术[M]. 徐州: 中国矿业大学出版社.
    郭志飚, 王将, 曹天培, 等. 2016. 薄煤层切顶卸压自动成巷关键参数研究[J]. 中国矿业大学学报, 45 (5): 879-885. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201605004.htm
    何江, 窦林名, 巩思园, 等. 2015. 倾斜薄煤层切顶巷预裂顶板防治冲击矿压技术研究[J]. 煤炭学报, 40 (6): 1347-1352. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201506020.htm
    何满潮, 陈上元, 郭志飚, 等. 2017a. 切顶卸压沿空留巷围岩结构控制及其工程应用[J]. 中国矿业大学学报, 46 (5): 959-969. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201705002.htm
    何满潮, 高玉兵, 杨军, 等. 2017b. 无煤柱自成巷聚能切缝技术及其对围岩应力演化的影响研究[J]. 岩石力学与工程学报, 36 (6): 1314-1325. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201706003.htm
    何满潮, 高玉兵, 杨军, 等. 2018a. 厚煤层快速回采切顶卸压无煤柱自成巷工程试验[J]. 岩土力学, 39 (1): 254-264. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201801033.htm
    何满潮, 郭鹏飞, 张晓虎, 等. 2018b. 基于双向聚能拉张爆破理论的巷道顶板定向预裂[J]. 爆炸与冲击, 38 (4): 795-803. https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ201804011.htm
    侯朝炯, 王襄禹, 柏建彪, 等. 2021. 深部巷道围岩稳定性控制的基本理论与技术研究[J]. 中国矿业大学学报, 50 (1): 1-12. doi: 10.3969/j.issn.1009-105x.2021.01.001
    黄维新, 吴寒, 王杰, 等. 2019. 偏压软弱围岩隧道开挖顺序比较研究[J]. 工程地质学报, 27 (2): 277-285. doi: 10.13544/j.cnki.jeg.2017-503
    孟令超, 徐荣超, 王安明, 等. 2020. 单轴压缩下两种脆性岩石强度及声发射特性的试验研究[J]. 工程地质学报, 28 (6): 1178-1185. doi: 10.13544/j.cnki.jeg.2019-562
    蒲文龙, 张国华, 毕业武. 2014. 定向断裂切顶卸压窄煤柱沿空掘巷关键技术研究[J]. 工业安全与环保, 40 (5): 45-47. doi: 10.3969/j.issn.1001-425X.2014.05.013
    钱鸣高, 许家林. 2019. 煤炭开采与岩层运动[J]. 煤炭学报, 44 (4): 973-984. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201904001.htm
    隋旺华, 王丹丹, 孙亚军, 等. 2019. 矿山水文地质结构及其采动响应[J]. 工程地质学报, 27 (1): 21-28. doi: 10.13544/j.cnki.jeg.2019-072
    王家臣, 王兆会. 2015. 高强度开采工作面顶板动载冲击效应分析[J]. 岩石力学与工程学报, 34 (S2): 3987-3997. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2015S2044.htm
    王猛, 柏建彪, 王襄禹, 等. 2012. 迎采动面沿空掘巷围岩变形规律及控制技术[J]. 采矿与安全工程学报, 29 (2): 197-202. doi: 10.3969/j.issn.1673-3363.2012.02.009
    王琦, 张朋, 蒋振华, 等. 2021. 深部高强锚注切顶自成巷方法与验证[J]. 煤炭学报, 46 (2): 382-397. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202102006.htm
    许家林. 2020. 煤矿绿色开采20年研究及进展[J]. 煤炭科学技术, 48 (9): 1-15. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ202009001.htm
    于洋, 王襄禹, 薛广哲, 等. 2013. 迎采动工作面沿空掘巷动态分段围岩控制技术[J]. 煤炭科学技术, 41 (7): 43-46, 50. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201307012.htm
    张农, 李学华, 高明仕. 2004. 迎采动工作面沿空掘巷预拉力支护及工程应用[J]. 岩石力学与工程学报, 23 (12): 2100-2105. doi: 10.3321/j.issn:1000-6915.2004.12.029
    张平松, 张丹, 孙斌杨, 等. 2019. 巷道断面空间岩层变形与破坏演化特征光纤监测研究[J]. 工程地质学报, 27 (2): 260-266. doi: 10.13544/j.cnki.jeg.2018-070
    张自政, 柏建彪, 陈勇, 等. 2016. 浅孔爆破机制及其在厚层坚硬顶板沿空留巷中的应用[J]. 岩石力学与工程学报, 35 (S1): 3008-3017. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2016S1047.htm
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  82
  • HTML全文浏览量:  45
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-21
  • 修回日期:  2021-07-25
  • 网络出版日期:  2021-09-03
  • 刊出日期:  2021-09-03

目录

    /

    返回文章
    返回