岩爆和冲击地压的差异解析及深部工程地质灾害关键机理问题

宫凤强 潘俊锋 江权

宫凤强, 潘俊锋, 江权. 2021. 岩爆和冲击地压的差异解析及深部工程地质灾害关键机理问题[J]. 工程地质学报, 29(4): 933-961. doi: 10.13544/j.cnki.jeg.2021-0555
引用本文: 宫凤强, 潘俊锋, 江权. 2021. 岩爆和冲击地压的差异解析及深部工程地质灾害关键机理问题[J]. 工程地质学报, 29(4): 933-961. doi: 10.13544/j.cnki.jeg.2021-0555
Gong Fengqiang, Pan Junfeng, Jiang Quan. 2021. The difference analysis of rock burst and coal burst and key mechanisms of deep engineering geological hazards[J]. Journal of Engineering Geology, 29(4): 933-961. doi: 10.13544/j.cnki.jeg.2021-0555
Citation: Gong Fengqiang, Pan Junfeng, Jiang Quan. 2021. The difference analysis of rock burst and coal burst and key mechanisms of deep engineering geological hazards[J]. Journal of Engineering Geology, 29(4): 933-961. doi: 10.13544/j.cnki.jeg.2021-0555

岩爆和冲击地压的差异解析及深部工程地质灾害关键机理问题

doi: 10.13544/j.cnki.jeg.2021-0555
基金项目: 

国家自然科学基金 42077244

岩土力学与工程国家重点实验室开放基金 Z020005

东南大学中央高校基本科研业务费专项资金 2242021

东南大学中央高校基本科研业务费专项资金 R10080

东南大学中央高校基本科研业务费专项资金 3205002108C3

详细信息
    通讯作者:

    宫凤强(1979-), 男, 博士, 教授, 博士生导师, 主要从事岩爆、冲击地压等工程地质灾害发生机理、岩石和煤储能规律及应用、深部岩石动力学等方面的科研与教学工作.E-mail: fengqiangg@126.com

  • 中图分类号: TD324;P642

THE DIFFERENCE ANALYSIS OF ROCK BURST AND COAL BURST AND KEY MECHANISMS OF DEEP ENGINEERING GEOLOGICAL HAZARDS

Funds: 

the National Natural Science Foundation of China 42077244

the Open Research Fund of State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences Z020005

the Fundamental Research Funds for the Central Universities of Southeast University 2242021

the Fundamental Research Funds for the Central Universities of Southeast University R10080

the Fundamental Research Funds for the Central Universities of Southeast University 3205002108C3

  • 摘要: 岩爆和冲击地压原来在自然界并不存在,完全是由于人类进行深部地下空间利用、深部矿产资源开采等工程建设时诱发产生的,两者同属于最典型的深部工程地质灾害。由于历史原因,岩爆和冲击地压长期存在概念混用的情况。本文比较详细地综述了岩爆和冲击地压领域国内早期的研究历程,系统解析了岩爆和冲击地压之间存在的差异。在研究对象(硬岩和煤的承载强度、储能及释能能力、弹脆性)、受力条件(地应力、扰动应力)和边界条件(开挖和开采方法及工序、扰动范围和时效性等)方面,岩爆和冲击地压均存在根本区别;在表观现象、限定对象、研究对象、赋存条件、行业领域、工程建设方法、工程建设目的、要求及支护性质、诱发机理、倾向性判据、划分类型、划分等级、等级评价方法等方面,岩爆和冲击地压也存在很大差异。综上,岩爆和冲击地压是并列的两类地质体动力破坏现象,两者之间不存在隶属关系。在综合参考前人研究的基础上,分别给出了岩爆和冲击地压各自的定义和内涵。岩爆的定义为发生在深埋隧道(隧洞)、深部矿山巷道及矿柱部位的硬岩弹射、爆裂或崩落现象,伴随不同程度声响;冲击地压定义为发生在深部煤矿中煤抛出现象,释放出不同程度的动能,严重时往往伴随震动、巨响、气浪或冲击波。从煤动力冲击破坏的现象与名称统一的角度考虑,建议用“煤冲击”代替“冲击地压”概念。在此基础上,详细阐述了岩爆和冲击地压研究中的7点认识。最后,从研究对象、受力条件和边界条件等3个方面讨论了岩爆和冲击地压的关键机理问题,即从静动(或动静)组合加载力学的角度研究岩爆和冲击地压,符合深部地质体破坏的全受力路径,同时要从能量守恒的角度研究从静态到动态的转换问题。在岩爆和冲击地压的机理分析、预测预报、监测报警、调控防治中,都要科学认识各影响因素之间的逻辑关系和辩证关系(注:本文因为无法找到与冲击地压契合的英文名称,在英文摘要中同时存在“coal burst”和“coal bump”两种表达)。
  • 图  1  锦屏Ⅱ级水电站辅助隧洞强岩爆(Jiang et al., 2010)

    Figure  1.  Strong rock burst in assistant tunnel of Jinping Ⅱ hydropower station(Jiang et al., 2010)

    图  2  赵楼煤矿强冲击地压(潘俊锋等,2020a)

    a.综放工作面;b.运输巷

    Figure  2.  Strong rock burst in Zhaolou coal mine(Pan et al., 2020a)

  • Bai S W, Zhu W S, Wang K J. 1983. Some rock mechanics related to a large underground power station in a region with high rock stress. Chinese Journal of Rock Mechanics and Engineering, 2(1): 33-39.
    Beringer B. 1928. Rock bursts[J]. Mining Magazine(Longon), 38(5): 149.
    Brown E T. 1984. Rockbursts: prediction and control[J]. Tunnels and Tunnelling, 16(4): 17-19.
    C. Г. 阿维尔申. 1959. 冲击地压[M]. 北京: 煤炭工业出版社.
    Cai M F, Ji D, Guo Q F. 2013. Study of rockburst prediction based on in-situ stress measurement and theory of energy accumulation caused by mining disturbance[J]. Chinese Journal of Rock Mechanics and Engineering, 32(10): 1973-1980.
    Cai W, Dou L M, Li Z L, et al. 2014. Microseismic multidimensional information identification and spatio-temporal forecasting of rock burst: A case study of Yima Yuejin coal Mine, Henan, China[J]. Chinese Journal of Geophysics, 57(8): 2687-2700.
    Cao A Y, Xue C C, Wu Y, et al. 2021. Study on mechanism of rock burst in fold structure area of coal mine and its prevention practice[J]. Coal Science and Technology, 49(6): 82-87.
    Chen B R, Feng X T, Ming H J, et al. 2012. Evolution law and mechanism of rockbursts in deep tunnels: time delayed rockburst[J]. Chinese Journal of Rock Mechanics and Engineering, 31(3): 561-569.
    Chen F, He C, Deng J H. 2015. Concept of high geostress and its qualitative and quantitative definitions[J]. Rock and Soil Mechanics, 36(4): 971-980.
    Chen S J, Yang Y J, Guo W J. 2007. Experiment and analysis of coal burst tendency[J]. Research and Exploration in Laboratory, 26(11): 294-296.
    Cheng Y P, Liu Q Q, Ren T X. 2017. Coal Mechanics[M]. Beijing: Science Press.
    Cook N G W. 1963. The basic mechanics of rockburst[J]. Journal of the Southern African Institute of Mining and Metallurgy, 64(3): 71-81. http://journals.co.za/deliver/fulltext/saimm/64/3/3783.pdf?itemId=/content/saimm/64/3/AJA0038223X_3752&mimeType=pdf&containerItemId=content/journal/saimm
    Cook N G W. 1965. A note on rockburst considered as a problem of stability[J]. Journal of South African Institute of Mining and Metallurgy, 65: 437-445.
    Crane W R. 1929. Rock bursts in the lake superior copper mines, keweenaw point, michigan[C]. Washington: U.S. Government Printing Office.
    Cui F, Zhang T H, Lai X P, et al. 2021. Research on mining disturbance characteristics and productivity of rock burst mines under different mining intensities[J]. Coal Science and Technology, https://doi.org/10.13225/j.cnki.jccs.2021.0184. doi: 10.13225/j.cnki.jccs.2021.0184
    Dou L M, He X Q. 2001. Prevention and Control of Rock Burst in Coal Mine[M]. Xuzhou: China University of Mining and Technology Press.
    Dou L M, Mou Z L, Cao A Y, et al. 2017. Rockburst Prevention and Control of Coal Mine[M]. Beijing: Science Press.
    Dou L M, Zhao C G, Yang S G, et al. 2006. Prevention and Control of Rock Burst in Coal Mine[M]. Xuzhou: China University of Mining and Technology Press.
    Driad-Lebeau L, Lahaie F, Heib M A, et al. 2005. Seismic and geotechnical investigations following a rockburst in a complex French mining district[J]. International Journal of Coal Geology, 64(1-22): 66-78.
    Du K, Tao M, Li X B, et al. 2016. Experimental study of slabbing and rockburst induced by true-triaxial unloading and local dynamic disturbance[J]. Rock Mechanics and Rock Engineering, 49(9): 3437-3453. doi: 10.1007/s00603-016-0990-4
    Du X L, Wang T. 2017. Essence and applied range of coal burst, rock burst and mining-induced seismicity[J]. Coal and Chemical Industry, 40(3): 1-4.
    Feng T, Pan C L, Wang H T, et al. 1998. A new method for determining elastic strain energy index of burst rocks[J]. The Chinese Journal of Nonferrous Metals, 8(2): 352-355.
    Feng T, Xie X B, Wang W X, et al. 2000. Brittleness of rocks and brittleness indexes for describing rockburst proneness[J]. Mining and Metallurgical Engineering, 20(4): 18-19.
    Feng X T, Chen B R, Ming H J, et al. 2012. Evolution law and mechanism of rockbursts in deep tunnels: immediate rockburst[J]. Chinese Journal of Rock Mechanics and Engineering, 31(3): 433-444.
    Feng X T, Chen B R, Zhang C Q, et al. 2013. Mechanism, warning and dynamic control of rockburst development processs[M]. Beijing: Science Press.
    Feng X T, Wang Y J. 1998a. New development in researching rockburst induced by mining at great depth and its control strategies[J]. China Mining Magazine, 7(5): 42-45.
    Feng X T, Wang Y J, Ozbay M U, et al. 1998b. Rockburst induced by mining at great depth and its control strategies——An integrated intelligent system[J]. China Mining Magazine, 7(6): 44-46.
    Feng X T, Xiao Y X, Feng G L, et al. 2019. Study on the development process of rockbursts[J]. Chinese Journal of Rock Mechanics and Engineering, 38(4): 649-673.
    Feng X T. 1994. Adaptive pattern recognition to predict rock bursts in underground openings[J]. Journal of Northeastern University, 15(5): 471-475.
    Fu S G, Zhang X K, Li H H. 2016. Characteristics and prevention and control measures of rock burst in excavation of ultra-deep shaft[J]. Journal of Safety Science and Technology, 12(12): 48-52.
    Fu Y K. 2018. Study on Impact tendency of combined coal and rock mass based on residual energy release rate index[J]. Safety in Coal Mines, 49(9): 63-67.
    Gao M Z, Xie J, Gao Y N, et al. 2021. Mechanical behavior of coal under different mining rates: A case study from laboratory experiments to field testing[J]. International Journal of Mining Science and Technology, https://doi.org/10.1016/j.ijmst.2021.06.007. doi: 10.1016/j.ijmst.2021.06.007
    Gong F Q, Li X B. 2007a. A distance discriminant analysis method for prediction of possibility and classification of rockburst and its application[J]. Chinese Journal of Rock Mechanics and Engineering, 26(5): 1012-1018.
    Gong F Q, Li X B, Lin H. 2007b. Model of distance discriminant analysis for rockburst prediction in tunnel engineering and its application[J]. China Railway Science, 28(4): 25-28.
    Gong F Q, Li X B, Liu X L, et al. 2010a. Experimental study of dynamic characteristics of sandstone under one-dimensional coupled static and dynamic loads[J]. Chinese Journal of Rock Mechanics and Engineering, 29(10): 2076-2085.
    Gong F Q, Li X B, Zhang W. 2010b. Rockburst prediction of underground engineering based on Bayes discriminant analysis method[J]. Rock and Soil Mechanics, 31(S1): 370-377, 387.
    Gong F Q, Li X B, Liu X L, et al. 2011. Preliminary experimental study of characteristics of rock subjected to 3 d coupled static and dynamic loads[J]. Chinese Journal of Rock Mechanics and Engineering, 30(6): 1179-1190.
    Gong F Q, Luo Y, Si X F, et al. 2017a. Simulated experimental study on rockburst in deep hard rock circula tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 36(7): 1634-1648.
    Gong F Q, Ye H, Luo Y. 2017b. Rate effect on the burst tendency of coal-rock combined body under low loading rate range[J]. Journal of China Coal Society, 42(11): 2852-2860.
    Gong F Q, Luo Y, Li X B, et al. 2018a. Experimental simulation investigation on rockburst induced by spalling failure in deep circular tunnels[J]. Tunnelling and Underground Space Technology, 81: 413-427. doi: 10.1016/j.tust.2018.07.035
    Gong F Q, Ye H, Luo Y. 2018b. The effect of high loading rate on the behaviour and mechanical properties of coal-rock combined body[J]. Shock and Vibration, 4374530, 1-9.
    Gong F Q, Yan J Y, Li X B. 2018c. A new criterion of rock burst proneness based on the linear energy storage law and the residual elastic energy index[J]. Chinese Journal of Rock Mechanics and Engineering, 37(9): 1993-2014.
    Gong F Q, Si X F, Li X B, et al. 2019a. Experimental investigation of strain rockburst in circular caverns under deep three-dimensional high-stress conditions[J]. Rock Mechanics and Rock Engineering, 52(5): 1459-1474. doi: 10.1007/s00603-018-1660-5
    Gong F Q, Wu W X, Li T B, et al. 2019b. Experimental simulation and investigation of spalling failure of rectangular tunnel under different three-dimensional stress states[J]. International Journal of Rock Mechanics and Mining Sciences, 122: 104081. doi: 10.1016/j.ijrmms.2019.104081
    Gong F Q, Yan J Y, Luo S, et al. 2019c. Investigation on the linear energy storage and dissipation laws of rock materials under uniaxial compression[J]. Rock Mechanics and Rock Engineering, 52(11): 4237-4255. doi: 10.1007/s00603-019-01842-4
    Gong F Q, Yan J Y, Li X B, et al. 2019d. A peak-strength strain energy storage index for rock burst proneness of rock materials[J]. International Journal of Rock Mechanics and Mining Sciences, 117: 76-89. doi: 10.1016/j.ijrmms.2019.03.020
    Gong F Q, Wang Y L, Luo S. 2020a. Rockburst proneness criteria for rock materials: review and new insights[J]. Journal of Central South University, 27(10): 2793-2821. doi: 10.1007/s11771-020-4511-y
    Gong F Q, Wu W X, Li T B. 2020b. Simulation test of spalling failure of surrounding rock in rectangular tunnels with different height-to-width ratios[J]. Bulletin of Engineering Geology and the Environment, 79: 3207-3219. doi: 10.1007/s10064-020-01734-w
    Gong F Q, Wang Y L, Wang Z G, et al. 2021. A new criterion of coal burst proneness based on the residual elastic energy index[J]. International Journal of Mining Science and Technology, 31: 553-563. doi: 10.1016/j.ijmst.2021.04.001
    Gong S Y, Dou L M, Xu X J, et al. 2012. Experimental study on the correlation between stress and p-wave velocity for burst tendency coal-rock samples[J]. Journal of Mining & Safety Engineering, 29(1): 67-71.
    Gray C J. 1932. Rock bursts: the effect of crush burst movements on stope remnants and workings in their vicinity-Discussion[J]. Journal of The Chemical, Metallurgical and Mining Society of South Africa, 82-87.
    Gray C J. 1933. Rock bursts: the effect of crush burst movements on stope remnants and workings in their vicinity-Reply to discussion[J]. Journal of The Chemical, Metallurgical and Mining Society of South Africa, 224-227.
    Han J, Zhang H W, Lan T W, et al. 2014. Geodynamic environment of rockburst in western Beijing coalfield[J]. Journal of China Coal Society, 39(6): 1056-1062.
    Han J. 2016. Study on geologic dynamic environment of mine strata pressure bump[J]. Coal Science and Technology, 44(6): 83-88.
    Han K, Yang W B, Chen X F, et al. 2020. Dynamic management control measures of rockburst risk in Bayu tunnel construction[J]. Railway Engineering, 60(6): 65-68.
    He C, Wang B, Wu D X. 2007. Research of relativity between rockburst character and influence factor and prevention measure in Cangling tunnel[J]. Hydrogeology & Engineering Geology, (2): 25-28.
    He J, Dou L M, Cai W, et al. 2014. Mechanism of dynamic and static combined load inducing rock burst in thin coal seam[J]. Journal of China Coal Society, 39(11): 2177-2182.
    He M C, Wang Y, Su J S, et al. 2018. Analysis of fractal characteristics of fragment of sandstone impact rock burst under static and dynamic coupled loads[J]. Journal of China University of Mining & Technology, 47(4): 699-705.
    He M C, Xie H P, Peng S P, et al. 2005. Study on rock mechanics in deep mining engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 24(16): 2803-2813.
    He M C. 2005. Conception system and evaluation indexes for deep engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 24(16): 2854-2858.
    Hoek E, Kaiser P K, Bawden W F. 1995. Support of underground excavations in hard rock[M]. Rotterdam: A. A. Balkenma: 101-133.
    Hong K R. 1995. Analysis and research on rock burst[J]. Tunnel Construction, (4): 20-25.
    Huang R Q, Shang Y Q, Lei M T. 1991. General situation and main geological survey experience of deep-buried long and large tunnels abroad[J]. Journal of Geological Hazards and Environment Preservation, 2(1): 58-66.
    Huang R Q, Wang X N. 1997. Influence of rock structure character of rock on rockburst in tensity[J]. Journal of Geological Hazards and Environment Preservation, 7(2): 15-20.
    Huang R Q, Wang X N. 1999. Analysis of dynamic disturbance on rock burst[J]. Bulletin of Engineering Geology and the Environment, 57(3): 281-284. doi: 10.1007/s100640050046
    Jiang B Y, Gu S T, Wang L G, et al. 2019. Strainburst process of marble in tunnel-excavation-induced stress path considering intermediate principal stress[J]. Journal of Central South University, 26(4): 984-999. doi: 10.1007/s11771-019-4065-z
    Jiang F X, Liu Y, Zhai M H, et al. 2017. Evaluation of rock burst hazard based on the classification of stress and surrounding rock[J]. Chinese Journal of Rock Mechanics and Engineering, 36(5): 1041-1052.
    Jiang F X, Yang S H, Cheng Y H, et al. 2006. A study on microseismic monitoring of rock burst in coal mine[J]. Chinese Journal of Geophysics, 49(5): 1511-1516.
    Jiang Q, Feng X T, Chen J, et al. 2013. Estimating in-situ rock stress from spalling veins: a case study[J]. Engineering Geology, 152(1): 38-47. doi: 10.1016/j.enggeo.2012.10.010
    Jiang Q, Feng X T, Fan Y L, et al. 2017. In situ experimental investigation of basalt spalling in a large underground powerhouse cavern[J]. Tunnelling and Underground Space Technology, 68: 82-94. doi: 10.1016/j.tust.2017.05.020
    Jiang Q, Feng X T, Xiang T B, et al. 2010. Rockburst characteristics and numerical simulation based on a new energy index: a case study of a tunnel at 2500 m depth[J]. Bulletin of Engineering Geology and the Environment, 69: 381-388. doi: 10.1007/s10064-010-0275-1
    Jiang Y D, Pan Y S, Jiang F X, et al. 2014. State of the art review on mechanism and prevention of coal bumps in China[J]. Journal of China Coal Society, 39(2): 205-213.
    Jin Z W, Ji H L. 2019. Practice of rock burst control in the process of deep blind vertical shaft construction of Qinling Mining Company[J]. Gold, 40(4): 37-40.
    Kaiser P K, Tannant D D, Mccreat D R. 1996. Canadian rockburst support handbook[M]. [S. l. ]: Geomechanics Research Centre: 66-81.
    Kang H P, Yi B D, Gao F Q, et al. 2019. Database and characteristics of underground in-situ stress distribution in Chinese coal mines[J]. Journal of China Coal Society, 44(1): 23-33.
    Kang Z H, Gao Z X, Ding X D, et al. 2003. Disturbance response criterion based rockburst analysis[J]. Journal of Hohai University(Natural Sciences), 31(2): 188-192.
    Kidybiński A. 1981. Bursting liability indices of coal[J]. International Journal of Rock Mechanics and Mining Sciences, 8(4): 295-304. http://www.sciencedirect.com/science/article/pii/0148906281911943
    Lan H X, Zhang N, Li L P, et al. 2021. Risk analysis of major engineering geological hazards for Sichuan-Tiber railway in the phase of feasibility study[J]. Journal of Engineering Geology, 29(2): 326-341.
    Li C G. 1984. An experimental analysis for the stress behavior of underground rock in high natural stress range[J]. Journal of Chengdu University of Science and Technology, (4): 79-86, 56.
    Li S J, Feng X T, Li Z H, et al. 2012. In situ monitoring of rockburst nucleation and evolution in the deeply buried tunnels of Jinping II hydropower station[J]. Engineering Geology, 137-138: 85-96. doi: 10.1016/j.enggeo.2012.03.010
    Li S L, Feng X T, Wang Y J, et al. 2001. Evaluation of rockburst pronenness in a deep hard rock mine[J]. Journal of Northeastern University, 22(1): 60-63.
    Li S L, Feng X T. 1998. Multi-indexes adaptive-pattern recognition of rockburst proneness in deep hard rock mine[J]. Mining Research and Development, 18(6): 1-3.
    Li S Y, He X S, Pan K, et al. 2007. Relationship between mining seismicity and gas outburst in coal mine-some scientific questions of mining safety[J]. Physics, 36(2): 136-145.
    Li X B, Gong F Q, Tao M, et al. 2017a. Failure mechanism and coupled static-dynamic loading theory in deep hard rock mining: a review[J]. Journal of Rock Mechanics and Geotechnical Engineering, 9(4): 767-782. doi: 10.1016/j.jrmge.2017.04.004
    Li X B, Zhou J, Wang S F, et al. 2017b. Review and practice of deep mining for solid mineral resources[J]. The Chinese Journal of Nonferrous Metals, 27(6): 1236-1262.
    Li X B, Gong F Q, Wang S F, et al. 2019. Coupled static-dynamic loading mechanical mechanism and dynamic criterion of rockburst in deep hard rock mines[J]. Chinese Journal of Rock Mechanics and Engineering, 38(4): 708-723.
    Li X B, Gong F Q. 2021. Research progress and prospect of deep mining rock mechanics based on coupled static-dynamic loading testing[J]. Journal of China Coal Society, 46(3): 846-866.
    Li X B, Ma C D, Chen F, et al. 2004. Experimental study of dynamic response and failure behavior of rock under coupled static-dynamic loading[C]. In: Contribution of Rock Mechanics to the New Century, Proceedings of the 3rd Asian Rock Mechanics Symposium. Rotterdam: Millpress.
    Li X B, Yao J R, Gong F Q. 2011. Dynamic problems in deep exploitation of hard rock metal mines[J]. The Chinese Journal of Nonferrous Metals, 21(10): 2551-2563.
    Li X B, Zhou Z L, Lok T S, et al. 2008. Innovative testing technique of rock subjected to coupled static and dynamic loads[J]. International Journal of Rock Mechanics and Mining Sciences, 45(5): 739-748. doi: 10.1016/j.ijrmms.2007.08.013
    Li Y, Huang M, Zhang L C, et al. 1994. Fractal dimension in controlling of coal outburst[J]. Rock and soil Mechanics, 15(4): 34-38.
    Liang Z G. 1988. The regularity of rock burst taking form and its measurement of prevention and control in coal mines[J]. Journal of Liaoning Technical University, 7(4): 61-67.
    Lin F, Huang R Q, Cai G J. 2009. Experimental study for unloading and relaxation of dam base during excavation at Xiaowan hydropower station[J]. Journal of Engineering Geology, 17(5): 606-611.
    Liu B C, Zhan Z M, Cui Z L. 1983. A study of deformation and fracture of coal samples by compression[J]. Journal of China Coal Society, (2): 51-61.
    Liu J H, Sun H, Tian Z J, et al. 2018. Effect of advance speed on rock burst in coal mines and its dynamic control method[J]. Journal of China Coal Society, 43(7): 1858-1865.
    Liu S H, Mao D B, Qi Q X, et al. 2014. Under static loading stress wave propagation mechanism and energy dissipation in compound coal-rock[J]. Journal of China Coal Society, 39(S1): 15-22.
    Liu T C. 1982. Some comments on terminology in the field of rock pressure[J]. Journal of China Coal Society, (1): 12-29.
    Lu C P, Dou L M, Wu X R. 2007. Experimental research on rules of rockburst tendency evolution and acoustic-electromagnetic effects of compound coal-rock samples[J]. Chinese Journal of Rock Mechanics and Engineering, 26(12): 2549-2555.
    Lu J Y. 1986. Study on mechanism of rockburst in a headrace tunnel[C]//The first Chinese conference proceeding of Rock Mechanics Numerical Calculation and Model Test. Chengdu: Southwest Jiaotong University Press.
    Lu Z G, Chang H S, Zhang Z P. 1985. Comprehensive outburst prevention and control[J]. Coal Science and Technology, (2): 10-13.
    Luo Y, Gong F Q, Liu D Q, et al. 2019. Experimental simulation investigation on the process and failure characteristics of spalling in D-shaped tunnels under true-triaxial loading conditions[J]. Tunnelling and Underground Space Technology, 90: 42-61. doi: 10.1016/j.tust.2019.04.020
    Luo Y, Li X P, Dong Q, et al. 2015. Damage cause study for static and dynamic combination of excavation and unloading in deep underground tunnels[J]. Chinese Journal of Rock Mechanics and Engineering, 34(S1): 3365-3371.
    Moore E S. 1918. Air blasts in the Kolar gold field, India. Am. Inst. Min. Eug. Bull. 135: 687. Discussion by W. E. Smeeth, Am. Inst. Min. Eng. Bull. 143: 1542.
    Ortlepp W D. 1997. Rock fracture and rockbursts: an illustrative study[M]. Johannesburg: The South African Institute of Mining and Metallurgy: 37-54.
    Ortlepp W D. 2005. RaSiM comes of age-A review of the contribution to the understanding and control of mine rockburst[C]//Proceeding of the 6th International Symposium on Rockburst and Seismicity in Mines. Nedlands: Australian Centre for Geomechanics.
    Pan J F, Liu S H, Gao J M, et al. 2020a. Prevention theory and technology of rock burst with distinguish dynamic and static load sources in deep mine roadway[J]. Journal of China Coal Society, 45(5): 1607-1613.
    Pan J F, Qi Q X, Liu S H, et al. 2020b. Characteristics, types and prevention and control technology of rock burst in deep coal mining in China[J]. Journal of China Coal Society, 45(1): 111-121.
    Pan J F, Mao D B, et al. 2016. Theory of burst start-up and complete technology for rockburst[M]. Xuzhou: China University of Mining and Technology Press.
    Pan J F, Mao D B, Lan H, et al. 2013. Study status and prospects of mine pressure bumping control technology in China[J]. Coal Science and Technology, 41(6): 21-25, 41.
    Pan J F, Ning Y, Mao D B, et al. 2012. Theory of rockburst start-up during coal mining[J]. Chinese Journal of Rock Mechanics and Engineering, 31(3): 586-596.
    Pan J F. 2015. Rock-burst prevention processes and technology in mine construction phrase[J]. Coal Mining Technology, 20(4): 111-114.
    Pan X F, Qian F J. 2014. Research on design and construction scheme for tunnel in rock fall stratum[J]. Highway, (4): 114-118.
    Pan Y S, Li Z H, Zhang M T. 2003. Distribution, type, mechanism and prevention of rockburst in China[J]. Chinese Journal of Rock Mechanics and Engineering, 22(11): 1844-1851.
    Pan Y S. 1999. Study on rockburst initiation and failure propagation[D]. Beijing: Tsinghua University.
    Pan Y S. 2018. Disturbance response instability theory of rockburst in coal mine[J]. Journal of China Coal Society, 43(8): 2091-2098.
    Peng J B, Cui P, Zhuang J Q. 2020. Challenges to engineering geology of Sichuan-Tibet railway[J]. Chinese Journal of Rock Mechanics and Engineering, 39(12): 2378-2389.
    Qi Q X, Chen S B, Wang H X, et al. 2003. Study on the relations among coal bump, rockburst and mining tremor with numerical simulation[J]. Chinese Journal of Rock Mechanics and Engineering, 22(11): 1852-1858.
    Qi Q X, Li H T, Li X P. 2021. Qualitative and quantitative evaluation of impact risk in underground mine[J]. Coal Science and Technology, 49(4): 12-19.
    Qi Q X, Liu T Q, Shi Y W. 1995. Mechanism of friction sliding destability of rock burst[J]. Ground Pressure and Strata Control, 1995(3-4): 174-177.
    Qi Q X, Zhao S K, Li H T, et al. 2020. Several key problems of coal bump prevention and control in China's coal mines[J]. Safety in Coal Mines, 51(10): 135-143, 151.
    Qian Q H. 2004. The characteristic scientific phenomena of engineering response to deep rock mass and the implication of deepness[J]. Journal of East China University of Technology, 27(1): 1-5.
    Qian Q H. 2014. Definition, mechanism, classification and quantitative forecast model for rockburst and pressure bump[J]. Rock and Soil Mechanics, 35(1): 1-6.
    Qiao W, Li W P. 2008. Distribution law of in-situ stress field in engineering subzone of deep coal mine and application in forecast of outburst[J]. Journal of Engineering Geology, 16(S): 124-127.
    Qin S Q, Wang S J. 2005. Instability leading to rockbursts and nonlinear evolutionary mechanisms for coal-pillar-and-roof system[J]. Journal of Engineering Geology, 13(4): 437-446.
    Rice, George S. 1924. Occurrence of bumps in the Springhill No. 2 mine of the Dominion Coal Co. (Ltd. )[C]. Nova Scotia, Dept. Pub. Works and Mines, 77.
    Rickard T A. 1923. Air blasts in mines[J]. Engineering and Mining Journal Press, 116(21): 900.
    Roux H G, Denkhaus E. 1958. De-stressing: a means of ameliorating rockburst conditions[J]. Journal of the South African Institute of Mining and Metallurgy, 66-68.
    Si X F, Gong F Q. 2020a. Rockburst simulation tests and strength-weakening effect of circular tunnels under deep high stresses and internal unloading conditions[J]. Chinese Journal of Rock Mechanics and Engineering, 40(2): 276-289.
    Si X F, Gong F Q. 2020b. Strength-weakening effect and shear-tension failure mode transformation mechanism of rockburst for fine-grained granite under triaxial unloading compression[J]. International Journal of Rock Mechanics and Mining Sciences, 131: 104347. doi: 10.1016/j.ijrmms.2020.104347
    Si X F, Huang L Q, Gong F Q, et al. 2021. Experimental investigation on influence of loading rate on rockburst in deep circular tunnel under true-triaxial stress condition[J]. Journal of Central South University, 27(10): 2914-2929.
    Sinclair W E. 1936a. Rock bursts-the cause and prevention[J]. Journal of The Chemical, Metallurgical and Mining Society of South Africa, 4-11. http://journals.co.za/deliver/fulltext/saimm/37/1/5422.pdf?itemId=/content/saimm/37/1/AJA0038223X_5391&mimeType=pdf&containerItemId=content/journal/saimm
    Sinclair W E. 1936b. Rock bursts-the cause and prevention-Discussion[J]. Journal of The Chemical, Metallurgical and Mining Society of South Africa, 118-123.
    Smeeth W S. 1904. Air blasts and quakes on the Kolar gold field. Mysore Geol. Survey Bull. 2. (查)
    Song Z Q, Liu X G, Wang N P, et al. 1985. Research and practice of reforming the mining procedures in burst-tended coal seams under high stress[J]. Journal of Shandong University of Science and Technology(Natural Science), (2): 1-15.
    Spalding, Jack. 1928. Rock bursts, general[J]. Mining Magazine(London), 38(5): 286.
    Stacey T R. 2013. Dynamic rock failure and its containment[C]//Proceedings of the First International Conference on Rock Dynamics and Applications. Lausanne: CRC Press.
    Su G S, Hu L H, Feng X T, et al. 2018. True triaxial experimental study of rockbursts induced by ramp and cyclic dynamic disturbances[J]. Rock Mechanics and Rock Engineering, 51(4): 1027-1045. doi: 10.1007/s00603-017-1384-y
    Su Y Q, Gong F Q, Luo S, et al. 2021. Experimental study on the energy storage and dissipation characteristics of granite under two-dimensional compression with constant confining pressure[J]. Journal of Central South University, 28(3): 848-865. doi: 10.1007/s11771-021-4649-2
    Sun X N, Zhao G B, Zhang G Q. 2012. Analysis of influencing factors and prediction on rock burst[J]. Construction Technology, (12): 65-68.
    Szecowka Z, Domzal J, Ozana P. 1973. Energy index of natural bursting ability of coal(in Polish)[J]. Transactions of the Central Mining Institute, No. 594.
    Tai Y L, Wang L G, Zhang M T. 1998. Classified research on the rock burst[J]. Coal Mining Technology, (1): 27-28.
    Tan Y A. 1988. The mechanism research of rockburst and its comprehensive evaluation[D]. Xi'an: Xi'an College of Geology.
    Tan Y A. 1988. Analysis of fractured face of rockburst with scanning electron microscope and its progressive failure process[J]. Journal of Chinese Electron Microscopy Society, (2): 41-48.
    Tan Y A. 1991. Types and treatments of rockburst[J]. Geoscience, 5(4): 450-456. http://www.researchgate.net/publication/284701577_Types_and_treatments_of_rockburst
    Tan Y A. 1992. Discussion on energy impact index of rock bursting rock[J]. Hydrogeology and Engineering Geology, 19(2): 10-12.
    Tan Y L. 1990. The relation between geotectonic stress and impact ground pressure in Mentouguo mine[J]. Journal of Shandong Mining Institute, 9(3): 264-267.
    Tang C A, Wang J M, Zhang J J. 2010. Preliminary engineering application of microseismic monitoring technique to rockburst prediction in tunneling of Jinping II project[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2(3): 193-208. doi: 10.3724/SP.J.1235.2010.00193
    Tang L Z, Pan C L, Wang W X. 2002b. Surplus energy index for analysing rock burst proneness[J]. Journal of Central South University of Technology(Natural Science), 33(2): 129-132.
    Tang L Z, Pan C L. 2002a. Measures for the energy release control in the rock burst prevention and treatment of hard rock deposit[J]. Metal Mine, (4): 21-23, 37.
    Tao Z Y. 1987. Rockburst and its criterion in highly geostress zone[J]. Yangtze River, (5): 27-34.
    Tao Z Y. 1988. Rock burst in underground engineering construction of some power stations[J]. Hydroelectric Power, (7): 42-47.
    Tjongkie T. 1987. Rockbursts, case records, theory and control[J]. Chinese Journal of Rock Mechanics and Engineering, 6(1): 1-18.
    Union of South Africa. 1924. Witwatersrand rock burst committee. Report[C]. Union of South Africa.
    Wang C H, Guo F L, Ding L F, et al. 2009. High in-situ stress criteria for engineering area and a case analysis[J]. Rock and Soil Mechanics, 30(8): 2359-2364.
    Wang G F, Dou L M, Cai W, et al. 2018. Unstable energy triggering mechanism of rock burst[J]. Journal of China University of Mining & Technology, 47(1): 190-196.
    Wang J S. 2004. Application of comprehensive measures of preventing rook burst[J]. Coal, 13(3): 13, 25.
    Wang M Y, Song H, Zheng D L, et al. 2006. On mechanism of zonal disintegration within rock mass around deep tunnel and definition of deep rock engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 25(9): 1771-1776.
    Wang S J, Yang Z F. 1987. Some problems on geological mechanics of rock mass in underground engineering[J]. Chinese Journal Rock Mechanics and Engineering, 6(4): 301-308.
    Wang W X, Pan C L, Feng T. 2001. The new methods for determining rock-burst proneness of rock[J]. Nonferrous Metals Design, 28(4): 42-46.
    Wang X N, Huang R Q. 1998. Analysis of the influence of the dynamic disturbance on rock burst[J]. Mountain Research, 16(3): 188-192.
    Wang Y H, Li W D, Li Q G, et al. 1998. Method of fuzzy comprehensive evaluations for rockburst prediction[J]. Chinese journal of rock mechanics and engineering, 17(5): 493-501.
    Wang Y, Li L M, Tan W, et al. 2016. Research on characteristics and control techniques of rockburst in Qinling tunnel of water diversion project from Han river to Wei river[J]. Journal of Engineering Geology, 24(S1): 874-880.
    Wilson R R. 1928. Outbursts at casslday colliery[J]. Mining and Metallurgy, (9): 73.
    Wu C F, Zeng Y. 2003. Application of neural networks to study and prediction forecast rockburst[J]. Journal of Engineering Geology, 11(3): 263-268.
    Wu F Q, Wu J, Qi S W. 2010. Theoretical analysis on mechanism of rock burst of brittle rock mass[J]. Journal of Engineering Geology, 18(5): 589-595.
    Xie H P, Gao F, Ju Y, et al. 2015b. Quantitative definition and investigation of deep mining[J]. Journal of China Coal Society, 40(1): 1-10.
    Xie H P, Gao F, Ju Y. 2015a. Research and development of rock mechanics in deep ground engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 34(11): 2161-2178.
    Xie H P, PariseauW G. 1993. Fractal character and mechanism of rock bursts[J]. Chinese Journal of Rock Mechanics and Engineering, 12(1): 28-37.
    Xie H P, Peng R D, Ju Y, et al. 2005. On energy analysis of rock failure[J]. Chinese Journal of Rock Mechanics and Engineering, 24(15): 2603-2608. http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSLX200515000.htm
    Xie H P, Peng R D, Ju Y. 2004. Energy dissipation of rock deformation and fracture[J]. Chinese Journal of Rock Mechanics and Engineering, 23(21): 3565-3570.
    Xie H P. 2019. Research review of the state key research development program of China: Deep rock mechanics and mining theory[J]. Journal of China Coal Society, 44(5): 1283-1305.
    Xie K K, Shen Z, Huang L H, et al. 2019. Analysis and simulation of the impact of stress distribution law on rock burst[J]. Chinese Journal of Underground Space and Engineering, 15(S2): 920-925.
    Xu L S, Tang B M, Mu C C, et al. 2002. Study on influence of soil parameters on lateral response of pile foundations[J]. Technology of Highway and Transport, (4): 48-51.
    Xu L S, Wang L S, Li T B. 1999a. Present Situation of Rockburst Research at Home and Abroad[J]. Journal of Yangtze River Scientific Research Institute, 16(4): 24-27, 38.
    Xu L S, Wang L S. 1999b. Study on the laws of rockburst and its forecasting in the tunnel of Erlang Mountain road[J]. Chinese Journal of Geotechnical Engineering, 21(5): 569-572.
    Xu S L, Cui Z D. 2010. Analysis of in-situ geo-stress and rockburst at No. 2 ventilation shaft tunnel of Qinling highway tunnel[J]. Journal of Engineering Geology, 18(3): 407-412.
    Xu Z M, Huang R Q, Luo X C, et al. 2003. Limitations of static load theory in rockburst research and preliminary analysis on dynamics mechanism of rockburst[J]. Chinese Journal of Rock Mechanics and Engineering, 22(8): 1255-1262.
    Xue X C, Guo H Z, Ma Q C. 1987. High geo-stress in rock mass and its analysis[J]. Journal of Hydraulic Engineering, (3): 52-58.
    Xue Y G, Kong F M, Yang W M, et al. 2020. Main unfavorable geological conditions and engineering geological problems along Sichuan-Tibet railway[J]. Chinese Journal of Rock Mechanics and Engineering, 39(3): 445-468.
    Yan J, He C, Wang B, et al. 2019. Inoculation and characters of rockbursts in extra-long and deep-lying tunnels located on Yarlung Zangbo suture[J]. Chinese Journal of Rock Mechanics and Engineering, 38(4): 769-781.
    Yang G D. 1997. Prevention of shock bumps at depth during mining of thick seams at Bayi hydromine[J]. Hydraulic Coal Mining and Pipeline Transportation, (2): 28-34.
    Yang J M, Qiao L, Li Y, et al. 2019. Effect of bedding dip on energy evolution and rockburst tendency of loaded phyllite[J]. Chinese Journal of Engineering, 41(10): 1258-1265.
    Yang L, Gao F Q, Wang X Q, et al. 2019. Energy evolution law and failure mechanism of coal-rock combined specimen[J]. Journal of China Coal Society, 44(12): 3894-3902.
    Yin G Z, Xian X F, Jin L P, et al. 1997. The effect of crustal stresses on rock burst and evaluation of zone prone to rock burst[J]. Journal of China Coal Society, 22(2): 132-137.
    Zhang J J, Fu B J. 2008. Rockburst and its criteria and control[J]. Chinese Journal of Rock Mechanics and Engineering, 27(10): 2034-2042.
    Zhang J M, Li Q S, Zhang Y, et al. 2019. Definition of deep coal mining and response analysis[J]. Journal of China Coal Society, 44(5): 1314-1325.
    Zhang M T. 1985. Discussion on the mechanism of coal burst[J]. Journal of Fuxin Mining Institute, 4(S1): 65-72.
    Zhang S Q, Zhang C, Xiu J G, et al. 1993. Review of mines seismicity[J]. Progress in Geophysics, 8(3): 69-85. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWJ199303006.htm
    Zhang W B, Wang S K, Wu Y K, et al. 1986. To determine proneness of coal burst by dynamic failure time[J]. Coal Science and Technology, (3): 31-34.
    Zhang X R, Liu W G, Jiang Y D, et al. 2008. Coal bump characters and dynamic instability analysis of coal-rock structure in deep mine[J]. China Mining Magazine, 17(1): 93-97.
    Zhang Z Q, Guan B S, Weng H M. 1998. Basic analysis of rock bursting occurrence condition[J]. Journal of The China Railway Society, 20(4): 82-85.
    Zhao B J. 1981. The causes of formation and preventive measures for shocking underground pressure[J]. Journal of Fuxin Mining Institute, (1): 63-71.
    Zhao B J. 1987. Studies on coalburst prevention and control in Longfeng mine, Fushun[J]. Chinese Journal Rock Mechanics and Engineering, 6(1): 30-38.
    Zhao Y S, Feng Z C, Wan Z J. 2003. Least energy principle of dynamical failure of rock mass[J]. Chinese Journal of Rock Mechanics and Engineering, 22(11): 1781-1783.
    Zhao Y X, Jiang Y D, Tian S P. 2010. Investigation on the characteristics of energy dissipation in the preparation process of coal bumps[J]. Journal of China Coal Society, 35(12): 1979-1983.
    Zhou D P, Hong K R. 1995. The rockburst features of Taipingyi tunnel and the prevention methods[J]. Chinese Journal of Rock Mechanics and Engineering, 14(2): 171-178.
    Zhou G W, Liu W G, Jiang Y D, et al. 2008. Characteristics of energy accumulation and release of rock outburst in mining face[J]. Journal of Mining and Safety Engineering, 25(1): 73-78, 81.
    Zhou H, Chen S K, Zhang G Z, et al. 2020. Efficiency coefficient method and ground stress field inversion for rockburst predicition in deep and long tunnel[J]. Journal of Engineering Geology, 28(6): 1386-1396.
    Zhu Z F. 1986. Research on supplication of a complete stress-strain curve in rock burst[J]. Coal Science and Technology, (3): 35-40.
    Zou D Y, Jiang F X. 2004. Research of energy storing and gestation mechanism and forecasting of rockburst in the coal and rock mass[J]. Journal of China Coal Society, 29(2): 159-163.
    Zou G F, Mao Y. 2007. Regional geology and geological hazards in the project of water division from the south to the north via western course, China[J]. Journal of Engineering Geology, 15(S1): 1-6.
    Zuo J P, Chen Y, Cui F. 2018. Investigation on mechanical properties and rock burst tendency of different coal-rock combined bodies[J]. Journal of China University of Mining & Technology, 47(1): 81-87.
    《黑色金属矿山》编辑部. 1966. 隧道快速施工经验[J]. 金属矿山, (2): 36-41. https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC2007S1089.htm
    《煤炭学报》编辑部. 1983. 煤矿矿山压力名词术语中间讨论会综述[J]. 煤炭学报, (1): 89-95. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB198301009.htm
    И. М. 佩图霍夫, 等著. 1994. 冲击地压和突出的力学计算方法[M]. 段克信, 译. 北京: 煤炭工业出版社.
    白世伟, 朱维申, 王可钧. 1983. 在高应力区与一个大型地下水电站有关的若干岩石力学问题[J]. 岩石力学与工程学报, 2(1): 33-39.
    蔡美峰, 冀东, 郭奇峰. 2013. 基于地应力现场实测与开采扰动能量积聚理论的岩爆预测研究[J]. 岩石力学与工程学报, 32(10): 1973-1980. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201310003.htm
    蔡武, 窦林名, 李振雷, 等. 2014. 微震多维信息识别与冲击矿压时空预测——以河南义马跃进煤矿为例[J]. 地球物理学报, 57(8): 2687-2700. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201408027.htm
    曹安业, 薛成春, 吴芸, 等. 2021. 煤矿褶皱构造区冲击地压机理研究及防治实践[J]. 煤炭科学技术, 49(6): 82-87. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ202106011.htm
    陈炳瑞, 冯夏庭, 明华军, 等. 2012. 深埋隧洞岩爆孕育规律与机制: 时滞型岩爆[J]. 岩石力学与工程学报, 31(3): 561-569. doi: 10.3969/j.issn.1000-6915.2012.03.014
    陈菲, 何川, 邓建辉. 2015. 高地应力定义及其定性定量判据[J]. 岩土力学, 36(4): 971-980. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201504010.htm
    陈克俭. 1966. 不衬砌水工隧洞工程地质条件的初步探讨[J]. 人民长江, (1): 17-19. https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE196601003.htm
    陈绍杰, 杨永杰, 郭惟嘉. 2007. 煤岩冲击倾向性试验及分析[J]. 实验室研究与探索, 26(11): 294-296. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSY200711100.htm
    陈宗基. 1987. 岩爆的工程实录、理论与控制[J]. 岩石力学与工程学报, 6(1): 1-18. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX198701001.htm
    程远平, 刘清泉, 任廷祥. 2017. 煤力学[M]. 北京: 科学出版社.
    崔峰, 张廷辉, 来兴平, 等. 2021. 冲击地压矿井不同采动强度下的开采扰动特征及其产能研究[J]. 煤炭学报: 1-15. https://doi.org/10.13225/j.cnki.jccs.2021.0184. doi: 10.13225/j.cnki.jccs.2021.0184
    窦林名, 何学秋. 2001. 冲击矿压防治理论与技术[M]. 徐州: 中国矿业大学出版社.
    窦林名, 牟宗龙, 曹安业, 等. 2017. 煤矿冲击矿压防治[M]. 北京: 科学出版社.
    窦林名, 赵从国, 杨思光, 等. 2006. 煤矿开采冲击矿压灾害防治[M]. 徐州: 中国矿业大学出版社.
    杜学领, 王涛. 2017. 冲击地压、岩爆与矿震的内涵及使用范围研究[J]. 煤炭与化工, 40(3): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-HHGZ201703001.htm
    冯涛, 潘长良, 王宏图, 等. 1998. 测定岩爆岩石弹性变形能量指数的新方法[J]. 中国有色金属学报, 8(2): 352-355. doi: 10.3321/j.issn:1004-0609.1998.02.035
    冯涛, 谢学斌, 王文星, 等. 2000. 岩石脆性及描述岩爆倾向的脆性系数[J]. 矿冶工程, 20(4): 18-19. doi: 10.3969/j.issn.0253-6099.2000.04.006
    冯涛, 尹光志, 黄国良, 等. 1993. 煤层冲击倾向性的模糊综合评判[J]. 湘潭矿业学院学报, 8(S): 64-70. https://www.cnki.com.cn/Article/CJFDTOTAL-XTKY1993S1013.htm
    冯涛. 1999. 岩爆机理与防治理论及应用研究[D]. 长沙: 中南工业大学.
    冯夏庭, 陈炳瑞, 明华军, 等. 2012. 深埋隧洞岩爆孕育规律与机制: 即时型岩爆[J]. 岩石力学与工程学报, 31(3): 433-444. doi: 10.3969/j.issn.1000-6915.2012.03.001
    冯夏庭, 陈炳瑞, 张传庆, 等. 2013. 岩爆孕育过程的机制、预警与动态调控[M]. 北京: 科学出版社.
    冯夏庭, 王泳嘉, 奥兹贝M U, 等. 1998b. 深部开采诱发的岩爆及其防治策略——综合集成智能系统研究[J]. 中国矿业, 7(6): 44-46. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA199806014.htm
    冯夏庭, 王泳嘉. 1998a. 深部开采诱发的岩爆及其防治策略的研究进展[J]. 中国矿业, 7(5): 42-45. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA199805012.htm
    冯夏庭, 肖亚勋, 丰光亮, 等. 2019. 岩爆孕育过程研究[J]. 岩石力学与工程学报, 38(4): 649-673. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201904002.htm
    冯夏庭. 1994. 地下峒室岩爆预报的自适应模式识别方法[J]. 东北大学学报, 15(5): 471-475. doi: 10.3321/j.issn:1005-3026.1994.05.002
    抚顺胜利矿、抚顺煤炭科学研究所三结合小组. 1971. 抚顺胜利矿高压注水予防冲击地压试验[J]. 煤矿安全, (3): 14-19. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ197103002.htm
    付士根, 张兴凯, 李红辉. 2016. 超深竖井掘进岩爆特征及防治措施[J]. 中国安全生产科学技术, 12(12): 48-52. https://www.cnki.com.cn/Article/CJFDTOTAL-LDBK201612008.htm
    付玉凯. 2018. 基于剩余能量释放率指标的组合煤岩体冲击倾向性研究[J]. 煤矿安全, 49(9): 63-67. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ201809015.htm
    宫凤强, 李夕兵. 2007a. 岩爆发生和烈度分级预测的距离判别方法及应用[J]. 岩石力学与工程学报, 26(5): 1012-1018. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200705021.htm
    宫凤强, 李夕兵, 林杭. 2007b. 隧道岩爆预测的距离判别分析模型研究及应用[J]. 中国铁道科学, 28(4): 25-28. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK200704007.htm
    宫凤强, 罗勇, 司雪峰, 等. 2017a. 深部圆形隧洞板裂屈曲岩爆的模拟试验研究[J]. 岩石力学与工程学报, 36(7): 1634-1648. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201707008.htm
    宫凤强, 叶豪, 罗勇. 2017b. 低加载率范围内煤岩组合体冲击倾向性的率效应试验研究[J]. 煤炭学报, 42(11): 2852-2860. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201711009.htm
    宫凤强, 李夕兵, 刘希灵, 等. 2010a. 一维动静组合加载下砂岩动力学特性的试验研究[J]. 岩石力学与工程学报, 29(10): 2076-2085. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201010019.htm
    宫凤强, 李夕兵, 张伟. 2010b. 基于Bayes判别分析方法的地下工程岩爆发生及烈度分级预测[J]. 岩土力学, 31(S1): 370-377, 387. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2010S1060.htm
    宫凤强, 李夕兵, 刘希灵. 2011. 三维动静组合加载下岩石力学特性试验初探. 岩石力学与工程学报, 30(6): 1179-1190. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201106015.htm
    宫凤强, 闫景一, 李夕兵. 2018. 基于线性储能规律和剩余弹性能指数的岩爆倾向性判据[J]. 岩石力学与工程学报, 37(9): 1993-2014. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201809001.htm
    巩思园, 窦林名, 徐晓菊, 等. 2012. 冲击倾向煤岩纵波波速与应力关系试验研究[J]. 采矿与安全工程学报, 29(1): 67-71. doi: 10.3969/j.issn.1673-3363.2012.01.012
    谷德振, 王思敬. 1979. 论岩体工程地质力学的基本问题[C]//全国首届工程地质学术会议论文选集.
    谷德振. 1982. 中国工程地质学的发展[J]. 地质论评, (2): 180-183. doi: 10.3321/j.issn:0371-5736.1982.02.015
    郭然. 2000. 有岩爆倾向深埋硬岩矿床采矿理论及其应用研究[D]. 长沙: 中南工业大学.
    郭志. 1996. 实用岩体力学[M]. 北京: 地震出版社.
    国家自然科学基金委员会. 2019.2019年度专项项目川藏铁路重大基础科学问题项目指南[EB/OL]. (2016-06-27). http://www.NSFC.gov.cn/publish/portal0/tab434/info76521.htm.
    韩军, 张宏伟, 兰天伟, 等. 2014. 京西煤田冲击地压的地质动力环境[J]. 煤炭学报, 39(6): 1056-1062. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201406011.htm
    韩军. 2016. 煤矿冲击地压地质动力环境研究[J]. 煤炭科学技术, 44(6): 83-88. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201606013.htm
    韩侃, 杨文斌, 陈贤丰, 等. 2020. 巴玉隧道施工中岩爆风险动态管控措施[J]. 铁道建筑, 60(6): 65-68. doi: 10.3969/j.issn.1003-1995.2020.06.15
    何川, 汪波, 吴德兴. 2007. 苍岭隧道岩爆特征与影响因素的相关性及防治措施研究[J]. 水文地质工程地质, (2): 25-28. doi: 10.3969/j.issn.1000-3665.2007.02.006
    何江, 窦林名, 蔡武, 等. 2014. 薄煤层动静组合诱发冲击地压的机制[J]. 煤炭学报, 39(11): 2177-2182. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201411004.htm
    何满潮, 王炀, 苏劲松, 等. 2018. 动静组合荷载下砂岩冲击岩爆碎屑分形特征[J]. 中国矿业大学学报, 47(4): 699-705. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201804001.htm
    何满潮, 谢和平, 彭苏萍, 等. 2005. 深部开采岩体力学研究[J]. 岩石力学与工程学报, 24(16): 2803-2813. doi: 10.3321/j.issn:1000-6915.2005.16.001
    何满潮. 2005. 深部的概念体系及工程评价指标[J]. 岩石力学与工程学报, 24(16): 2854-2858. doi: 10.3321/j.issn:1000-6915.2005.16.007
    何满潮. 2010. 岩爆机理及其判别准则探讨[C]//新观点新学说学术沙龙文集51: 岩爆机理探索. 北京: 中国科学技术出版社.
    何祖荣. 1956. 煤与瓦斯突出原因的分析[J]. 合肥矿业学院学报, (1): 116-126. https://www.cnki.com.cn/Article/CJFDTOTAL-HEFE195600009.htm
    洪长发. 1981. 地应力及测量方法[J]. 建筑知识, (4): 35-37. https://www.cnki.com.cn/Article/CJFDTOTAL-JZZS198104022.htm
    洪开荣. 1995. 对岩爆问题的分析与研究[J]. 隧道建设, (4): 20-25. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD199504001.htm
    胡克智, 刘宝琛, 马光, 等. 1966. 煤矿的冲击地压[J]. 科学通报, 11(9): 430-432. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB196609015.htm
    黄润秋, 尚岳全, 雷明堂, 等. 1991. 国外深埋长大隧道概况及主要地质勘测经验[J]. 地质灾害与环境保护, 2(1): 58-66. https://www.cnki.com.cn/Article/CJFDTOTAL-DZHB199101007.htm
    黄润秋, 王贤能. 1997. 岩石结构特征对岩爆的影响研究[J]. 地质灾害与环境保护, 7(2): 15-20. https://www.cnki.com.cn/Article/CJFDTOTAL-DZHB702.002.htm
    贾愚如, 范正绮. 1989. 水工洞室中岩爆机制与判据[C]. 中国岩石力学与工程学会. 岩石力学在工程中的应用——第二次全国岩石力学与工程学术会议论文集. 北京: 知识出版社.
    姜福兴, 刘懿, 翟明华, 等. 2017. 基于应力与围岩分类的冲击地压危险性评价研究[J]. 岩石力学与工程学报, 36(5): 1041-1052. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201705001.htm
    姜福兴, 杨淑华, 成云海, 等. 2006. 煤矿冲击地压的微地震监测研究[J]. 地球物理学报, 49(5): 1511-1516. doi: 10.3321/j.issn:0001-5733.2006.05.032
    姜耀东, 潘一山, 姜福兴, 等. 2014. 我国煤炭开采中的冲击地压机理和防治[J]. 煤炭学报, 39(2): 205-213. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201402001.htm
    姜耀东. 2010. 关于煤矿冲击地压机理、预报与防治的思考[C]//新观点新学说学术沙龙文集51: 岩爆机理探索. 北京: 中国科学技术出版社.
    金志伟, 纪惠灵. 2019. 秦岭矿业公司深部盲竖井施工岩爆治理工程实践[J]. 黄金, 40(4): 37-40. https://www.cnki.com.cn/Article/CJFDTOTAL-HJZZ201904008.htm
    勘察技术资料编辑组. 1973. 国外地下工程勘察技术简介[J]. 勘察技术资料, (2): 31-46. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC197302002.htm
    康红普, 伊丙鼎, 高富强, 等. 2019. 中国煤矿井下地应力数据库及地应力分布规律[J]. 煤炭学报, 44(1): 23-33. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201901003.htm
    兰恒星, 张宁, 李郎平, 等. 2021. 川藏铁路可研阶段重大工程地质风险分析[J]. 工程地质学报, 29(2): 326-341. doi: 10.13544/j.cnki.jeg.2021-0114
    李朝国. 1984. 高地应力区洞室围岩应力特性的试验分析[J]. 成都科技大学学报, (4): 79-86, 56. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH198404010.htm
    李世愚, 和雪松, 潘科, 等. 2007. 矿山地震、瓦斯突出、煤岩体破裂-煤矿安全中的科学问题[J]. 物理, 36(2): 136-145. https://www.cnki.com.cn/Article/CJFDTOTAL-WLZZ200702006.htm
    李庶林, 冯夏庭, 王泳嘉, 等. 2001. 深井硬岩岩爆倾向性评价[J]. 东北大学学报, 22(1): 60-63. https://www.cnki.com.cn/Article/CJFDTOTAL-DBDX200101017.htm
    李庶林, 冯夏庭. 1998. 深井硬岩岩爆倾向性的多指标自适应模式判别[J]. 矿业研究与开发, 18(6): 1-3. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYK806.000.htm
    李夕兵, 宫凤强, 王少峰, 等. 2019. 深部硬岩矿山岩爆的动静组合加载力学机制与动力判据[J]. 岩石力学与工程学报, 38(4): 708-723. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201904006.htm
    李夕兵, 宫凤强. 2021. 基于动静组合加载力学试验的深部开采岩石力学研究进展与展望[J]. 煤炭学报, 46(3): 846-866. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202103012.htm
    李夕兵, 姚金蕊, 宫凤强. 2011. 硬岩金属矿山深部开采中的动力学问题[J]. 中国有色金属学报, 21(10): 2551-2563. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201110023.htm
    李夕兵, 周健, 王少锋, 等. 2017. 深部固体资源开采评述与探索[J]. 中国有色金属学报, 27(6): 1236-1262. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201706022.htm
    李玉, 黄梅, 张连城, 等. 1994. 冲击地压防治中的分数维[J]. 岩土力学, 15(4): 34-38. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX404.003.htm
    李玉生. 1982. 矿山冲击名词探讨——兼评"冲击地压"[J]. 煤炭学报, (2): 91-97. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB198202010.htm
    梁政国. 1988. 煤矿岩爆发生的成因、规律及其防治[J]. 阜新矿业学院学报, 7(4): 61-67. https://www.cnki.com.cn/Article/CJFDTOTAL-FXKY198804007.htm
    林锋, 黄润秋, 蔡国军. 2009. 小湾水电站低高程坝基开挖卸荷松弛机理试验研究[J]. 工程地质学报, 17(5): 606-611. doi: 10.3969/j.issn.1004-9665.2009.05.004
    林景云. 1959. 抚顺胜利矿的冲击地压[M]. 北京: 煤炭工业出版社.
    刘宝琛, 詹哲明, 崔志莲. 1983. 煤受压变形及破坏的试验研究[J]. 煤炭学报, (2): 51-61. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB198302005.htm
    刘国昌. 1975. 地下建筑围岩稳定的地质力学分析[J]. 长春地质学院学报, (1): 77-86. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ197501011.htm
    刘国昌. 1983. 高应力的地区矿区工程地质问题(以金川矿区为例)[J]. 西安地质学院学报, (1): 73-80. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX198301007.htm
    刘金海, 孙浩, 田昭军, 等. 2018. 煤矿冲击地压的推采速度效应及其动态调控[J]. 煤炭学报, 43(7): 1858-1865. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201807008.htm
    刘少虹, 毛德兵, 齐庆新, 等. 2014. 动静加载下组合煤岩的应力波传播机制与能量耗散[J]. 煤炭学报, 39(S1): 15-22. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2014S1004.htm
    刘听成. 1982. 对一些矿压名词术语的探讨[J]. 煤炭学报, (1): 12-29. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB198201001.htm
    芦子干, 常洪生, 张兆平. 1985. 冲击地压的综合防治[J]. 煤炭科学技术, (2): 10-13. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ198502002.htm
    陆菜平, 窦林名, 吴兴荣. 2007. 组合煤岩冲击倾向性演化及声电效应的试验研究[J]. 岩石力学与工程学报, 26(12): 2549-2555. doi: 10.3321/j.issn:1000-6915.2007.12.022
    陆家佑. 1986. 水工引水隧洞岩爆机制研究[C]//第一届全国岩石力学数值计算及模型试验讨论会论文集. 成都: 西南交通大学出版社.
    罗贻岭. 1975. 隧道施工中岩爆现象的实况与一般的处理方法[J]. 铁道标准设计, (3): 10-19. https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS197503001.htm
    罗贻岭. 1980. 对隧道岩爆现象的一些认识[J]. 力学与实践, (4): 45-47. https://www.cnki.com.cn/Article/CJFDTOTAL-LXYS198004011.htm
    罗忆, 李新平, 董千, 等. 2015. 动静力组合作用下深埋隧洞开挖卸荷诱发围岩动力损伤诱因研究[J]. 岩石力学与工程学报, 34(S1): 3365-3371. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2015S1094.htm
    马天辉, 唐春安, 蔡明, 等著. 2014. 岩爆分析、监测与控制[M]. 大连: 大连理工大学出版社.
    绵阳地区天池煤矿. 1976. 对天池煤矿发生"煤炮"-冲击地压机理的初步认识[J]. 矿业安全与环保, (S1): 72-75. https://www.cnki.com.cn/Article/CJFDTOTAL-ENER1976S1009.htm
    闵长江, 卜凡启, 周廷振, 编著. 1998. 煤矿冲击矿压及防治技术[M]. 徐州: 中国矿业大学出版社.
    潘长良, 谢学斌, 曹平. 1997. 岩爆预测预报方法[J]. 有色矿冶, (6): 3-5, 15. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKY706.001.htm
    潘长良. 1984. 岩爆的预测与控制[J]. 国外采矿技术快报, (2): 20-25. https://www.cnki.com.cn/Article/CJFDTOTAL-SJCK198402012.htm
    潘俊锋, 刘少虹, 高家明, 等. 2020a. 深部巷道冲击地压动静载分源防治理论与技术[J]. 煤炭学报, 45(5): 1607-1613. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202005006.htm
    潘俊锋, 齐庆新, 刘少虹, 等. 2020b. 我国煤炭深部开采冲击地压特征、类型及分源防控技术[J]. 煤炭学报, 45(1): 111-121. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202001012.htm
    潘俊锋, 毛德兵, 等著. 2016. 冲击地压启动理论与成套技术[M]. 徐州: 中国矿业大学出版社.
    潘俊锋, 毛德兵, 蓝航, 等. 2013. 我国煤矿冲击地压防治技术研究现状及展望[J]. 煤炭科学技术, 41(6): 21-25, 41. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201306005.htm
    潘俊锋, 宁宇, 毛德兵, 等. 2012. 煤矿开采冲击地压启动理论[J]. 岩石力学与工程学报, 31(3): 586-596. doi: 10.3969/j.issn.1000-6915.2012.03.017
    潘俊锋. 2015. 矿井建设时期2015冲击地压防治程序与技术[J]. 煤矿开采, 20(4): 111-114. https://www.cnki.com.cn/Article/CJFDTOTAL-MKKC201504035.htm
    潘俊锋. 2019. 谈冲击地压, 先弄清几个概念[N/OL]中国煤炭报, (2019-05-14)(第004版, 科教).
    潘雪峰, 乔粉剑. 2014. 处于岩爆地层的隧道设计和施工方案研究[J]. 公路, (4): 114-118. doi: 10.3969/j.issn.1002-0268.2014.04.019
    潘一山, 李忠华, 章梦涛. 2003. 我国冲击地压分布、类型、机理及防治研究[J]. 岩石力学与工程学报, 22(11): 1844-1851. doi: 10.3321/j.issn:1000-6915.2003.11.019
    潘一山, 刘成丹, 章梦涛. 1990. 考虑时间效应的冲击地压失稳理论及数值模拟[C]//岩土力学数值方法的工程应用——第二届全国岩石力学数值计算与模型实验学术研讨会论文集.
    潘一山. 1999. 冲击地压发生和破坏过程研究[D]. 北京: 清华大学.
    潘一山. 2018a. 煤矿冲击地压[M]. 北京: 科学出版社.
    潘一山. 2018b. 煤矿冲击地压扰动响应失稳理论及应用[J]. 煤炭学报, 43(8): 2091-2098. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201808001.htm
    彭建兵, 崔鹏, 庄建琦. 2020. 川藏铁路对工程地质提出的挑战[J]. 岩石力学与工程学报, 39(12): 2378-2389. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202012001.htm
    齐庆新, 陈尚本, 王怀新, 等. 2003. 冲击地压、岩爆、矿震的关系及其数值模拟研究[J]. 岩石力学与工程学报, 22(11): 1852-1858. doi: 10.3321/j.issn:1000-6915.2003.11.020
    齐庆新, 窦林名. 2008. 冲击地压理论与技术[M]. 徐州: 中国矿业大学出版社.
    齐庆新, 李海涛, 李晓鹏. 2021. 煤矿冲击危险性的定性与定量评价研究[J]. 煤炭科学技术, 49(4): 12-19. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ202104003.htm
    齐庆新, 刘天泉, 史元伟. 1995. 冲击地压的摩擦滑动失稳机理[J]. 矿山压力与项板管理, 1995(3-4): 174-177. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL5Z1.042.htm
    齐庆新, 张万斌. 1991. 煤层卸载爆破防治冲击地压的研究与实践[C]. 矿山坚硬岩体控制学术讨论会论文集.
    齐庆新, 赵善坤, 李海涛, 等. 2020. 我国煤矿冲击地压防治的几个关键问题[J]. 煤矿安全, 51(10): 135-143, 151. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ202010021.htm
    钱鸣皋. 1955. 介绍煤及瓦斯突出的性质与力学作用的现代学说[J]. 中国矿业大学学报, (3): 92-100. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD195503010.htm
    钱七虎. 2004. 深部岩体工程响应的特征科学现象及"深部"的界定[J]. 东华理工学院学报, 27(1): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-HDDZ200401001.htm
    钱七虎. 2010. 岩爆机理的简化分析和决定性参数的思考[C]//新观点新学说学术沙龙文集51: 岩爆机理探索. 北京: 中国科学技术出版社.
    钱七虎. 2014. 岩爆、冲击地压的定义、机制、分类及其定量预测模型[J]. 岩土力学, 35(1): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201401001.htm
    乔福祥. 1984. 岩石力学在煤矿中的应用与发展[J]. 矿山压力与顶板管理, (1): 3-14. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL198400001.htm
    乔伟, 李文平. 2008. 深部矿井地应力场分布规律及其在冲击地压预测中的应用[J]. 工程地质学报, 16(S): 124-127. http://www.gcdz.org/article/id/10284
    秦四清, 王思敬. 2005. 煤柱-顶板系统协同作用的脆性失稳与非线性演化机制[J]. 工程地质学报, 13(4): 437-446. doi: 10.3969/j.issn.1004-9665.2005.04.002
    山东煤矿安全监察局. 2020. 山东新巨龙能源有限责任公司"2·22"冲击地压事故调查报告http://www.sdcoal.gov.cn/articles/ch00190/202004/47b8a7d9-f749-4c33-a32b-df6791e258f7.shtml.
    石金良. 1979. 高地应力区岩石的脆性破裂[A]. 中国地质学会工程地质专业委员会, 全国首届工程地质学术会议论文选集: 178-181.
    司雪峰, 宫凤强. 2021. 深部高应力圆形隧洞内部卸荷条件下岩爆模拟试验和强度弱化效应研究[J]. 岩石力学与工程学报, 40(2): 276-289. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202102005.htm
    宋恕夏. 1984. 高应力区采场岩矿脆性破裂兼谈回采顺序[J]. 有色矿山, (5): 8-13. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKS198405001.htm
    宋振骐, 刘先贵, 王乃鹏, 等. 1985. 在高应力条件下改革有冲击地压危险煤层开采程序的研究和实践[J]. 山东科技大学学报(自然科学版), (2): 1-15. https://www.cnki.com.cn/Article/CJFDTOTAL-SDKY198502000.htm
    隋旺华, 主编. 2017. 煤矿工程地质学[M]. 北京: 煤炭工业出版社.
    孙旭宁, 赵国斌, 张国泉. 2012. 岩爆的影响因素分析与预测[J]. 施工技术, (12): 65-68. https://www.cnki.com.cn/Article/CJFDTOTAL-SGJS201212022.htm
    邰英楼, 王来贵, 章梦涛. 1998. 冲击地压的分类研究[J]. 煤矿开采, (1): 27-28. https://www.cnki.com.cn/Article/CJFDTOTAL-MKKC801.008.htm
    谭以安. 1988. 岩爆形成机理研究及综合评判[D]. 西安: 西安地质学院.
    谭以安. 1989. 岩爆岩石断口扫描电镜分析及岩爆渐进破坏过程[J]. 电子显微学报, (2): 41-48. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXV198902008.htm
    谭以安. 1991. 岩爆类型及其防治[J]. 现代地质, 5(4): 450-456. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ199104011.htm
    谭以安. 1992. 关于岩爆岩石能量冲击性指标的商榷[J]. 水文地质工程地质, 19(2): 10-12. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG199202005.htm
    谭云亮. 1990. 门头沟井田构造应力场与冲击地压的关系[J]. 山东矿业学院学报, 9(3): 264-267. https://www.cnki.com.cn/Article/CJFDTOTAL-SDKY199003009.htm
    唐春安, 费鸿禄, 徐小荷. 1993. 巷道表明岩爆的围压效应[C]//第二届全国青年岩石力学与工程学术研讨会论文集. 北京: 中国科学技术出版社.
    唐春安. 1997. 简谈未来矿山岩石力学研究方向[J]. 世界采矿快报, 13(7): 3-4. https://www.cnki.com.cn/Article/CJFDTOTAL-SJCK199707001.htm
    唐春安. 2010. 岩爆机理研究的关键问题[C]//新观点新学说学术沙龙文集51: 岩爆机理探索. 北京: 中国科学技术出版社.
    唐礼忠, 潘长良, 王文星. 2002b. 用于分析岩爆倾向性的剩余能量指数[J]. 中南工业大学学报, 33(2): 129-132. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD200202004.htm
    唐礼忠, 潘长良. 2002a. 硬岩矿床岩爆防治的能量释放控制措施[J]. 金属矿山, (4): 21-23, 37. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS200204005.htm
    陶振宇. 1976. 水工建设中的岩石力学问题[M]. 北京: 水利水电出版社.
    陶振宇. 1987. 高地应力区的岩爆及其判别[J]. 人民长江, (5): 27-34. https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE198705004.htm
    陶振宇. 1988. 若干电站地下工程建设中的岩爆问题[J]. 水力发电, (7): 42-47. https://www.cnki.com.cn/Article/CJFDTOTAL-SLFD198807012.htm
    铁三院标准处桥隧组. 1971. 改革铁路基本建设设计、施工规范隧道部分调查研究参考提纲[J]. 铁道标准设计, (11): 52-57. https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS197111007.htm
    王成虎, 郭放良, 丁立丰, 等. 2009. 工程区高地应力判据研究及实例分析[J]. 岩土力学, 30(8): 2359-2364. doi: 10.3969/j.issn.1000-7598.2009.08.029
    王桂峰, 窦林名, 蔡武, 等. 2018. 冲击地压的不稳定能量触发机制研究[J]. 中国矿业大学学报, 47(1): 190-196. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201801024.htm
    王加升. 2004. 防治冲击地压综合措施的应用[J]. 煤, 13(3): 13, 25. https://www.cnki.com.cn/Article/CJFDTOTAL-MEIA200403007.htm
    王来贵, 章梦涛, 潘一山. 1990. 冲击地压的内时模型及有限元法分析[C]//岩土力学数值方法的工程应用——第二届全国岩石力学数值计算与模型实验学术研讨会论文集.
    王明洋, 宋华, 郑大亮, 等. 2006. 深部巷道围岩的分区破裂机制及"深部"界定探讨[J]. 岩石力学与工程学报, 25(9): 1771-1776. doi: 10.3321/j.issn:1000-6915.2006.09.006
    王思敬, 杨志法. 1987. 地下工程中岩体工程地质力学问题[J]. 岩石力学与工程学报, 6(4): 301-308. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX198704001.htm
    王文星, 潘长良, 冯涛. 1998. 某矿矿岩岩爆倾向性的实验研究[J]. 中南工业大学学报, 29(S2): 22-24. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGYJ200010001109.htm
    王文星, 潘长良, 冯涛. 2001. 确定岩石岩爆倾向性的新方法及其应用[J]. 有色金属设计, 28(4): 42-46. doi: 10.3969/j.issn.1004-2660.2001.04.010
    王贤能, 黄润秋. 1998. 动力扰动对岩爆的影响分析[J]. 山地研究, 16(3): 188-192. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA199803005.htm
    王鹰, 李立民, 谭伟, 等. 2016. 引汉济渭工程超长深埋隧洞岩爆特征及防治技术研究[J]. 工程地质学报, 24(S1): 874-880. doi: 10.13544/j.cnki.jeg.2016.s1.126
    王元汉, 李卧东, 李启光, 等. 1998. 岩爆预测的模糊数学综合评判方法[J]. 岩石力学与工程学报, 17(5): 493-501. doi: 10.3321/j.issn:1000-6915.1998.05.003
    威廉·R·韦梅特. 1975. 美国矿业局关于地压控制的新技术与新设想[J]. 李典文译. 工业安全与环保, (1): 63-70.
    吴财芳, 曾勇. 2003. 神经网络在冲击地压危险性预测预报研究中的应用[J]. 工程地质学报, 11(3): 263-268. doi: 10.3969/j.issn.1004-9665.2003.03.007
    伍法权, 伍劼, 祁生文. 2010. 关于脆性岩体岩爆成因的理论分析[J]. 工程地质学报, 18(5): 589-595. doi: 10.3969/j.issn.1004-9665.2010.05.001
    谢和平, Pariseau W G. 1993. 岩爆的分形特征及机理[J]. 岩石力学与工程学报, 12(1): 28-37. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX199301003.htm
    谢和平, 高峰, 鞠杨. 2015a. 深部岩体力学研究与探索[J]. 岩石力学与工程学报, 34(11): 2161-2178. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201511001.htm
    谢和平, 高峰, 鞠杨, 等. 2015b. 深部开采的定量界定与分析[J]. 煤炭学报, 40(1): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201501001.htm
    谢和平. 2019. 深部岩体力学与开采理论研究进展[J]. 煤炭学报, 44(5): 1283-1305. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201905002.htm
    谢克坷, 沈泽, 黄练红, 等. 2019. 地应力分布对冲击地压影响分析与模拟研究[J]. 地下空间与工程学报, 15(S2): 920-925. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE2019S2056.htm
    谢学斌. 1999. 硬岩矿床岩爆预测与控制的理论和技术及其应用研究[D]. 长沙: 中南工业大学.
    徐林生, 唐伯明, 慕长春, 等. 2002. 高地应力与岩爆有关问题的研究现状[J]. 公路交通技术, (4): 48-51. doi: 10.3969/j.issn.1009-6477.2002.04.015
    徐林生, 王兰生, 李天斌. 1999a. 国内外岩爆研究现状综述[J]. 长江科学院院报, 16(4): 24-27, 38. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB904.005.htm
    徐林生, 王兰生. 1999b. 二郎山公路隧道岩爆发生规律与岩爆预测研究[J]. 岩土工程学报, 21(5): 569-572. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC199905009.htm
    徐士良, 崔振东. 2010. 秦岭公路隧道2号竖井地应力与岩爆分析[J]. 工程地质学报, 18(3): 407-412. doi: 10.3969/j.issn.1004-9665.2010.03.018
    徐则民, 黄润秋, 罗杏春, 等. 2003. 静荷载理论在岩爆研究中的局限性及岩爆岩石动力学机理的初步分析[J]. 岩石力学与工程学报, 22(8): 1255-1262. doi: 10.3321/j.issn:1000-6915.2003.08.006
    薛玺成, 郭怀志, 马启超. 1987. 岩体高地应力及其分析[J]. 水利学报, (3): 52-58. doi: 10.3321/j.issn:0559-9350.1987.03.008
    薛翊国, 孔凡猛, 杨为民, 等. 2020. 川藏铁路沿线主要不良地质条件与工程地质问题[J]. 岩石力学与工程学报, 39(3): 445-468. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202003003.htm
    严健, 何川, 汪波, 等. 2019. 雅鲁藏布江缝合带深埋长大隧道群岩爆孕育及特征[J]. 岩石力学与工程学报, 38(4): 769-781. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201904011.htm
    阎岩. 1982. 抚顺煤矿冲击地压的产生、危害及其防治[J]. 煤矿安全, (3): 11-18. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ198203001.htm
    央视新闻客户端. 2016. 记者探秘拉林铁路施工: 发生强岩爆时4t台车被震[EB/OL]. (2016-06-27). http://m.news.cctv.com/2016/06/27/ARTiuGtWelMhjn6q1HimRJHV160627.shtml.
    杨根地. 1997. 八一煤矿厚煤层深部水采煤炮的防治[J]. 水力采煤与管道运输, (2): 28-34. https://www.cnki.com.cn/Article/CJFDTOTAL-SLCM199702005.htm
    杨惠莲. 1989. 冲击地压的特征、发生原因与影响因素[J]. 煤炭工程师, (2): 39-44. https://www.cnki.com.cn/Article/CJFDTOTAL-ENER198902007.htm
    杨磊, 高富强, 王晓卿, 等. 2019. 煤岩组合体的能量演化规律与破坏机制[J]. 煤炭学报, 44(12): 3894-3902. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201912032.htm
    姚宝魁, 张承娟. 1985. 高地应力坝区硐室围岩岩爆及其断裂破坏机制[J]. 水文地质工程地质, (6): 21-24. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG198506005.htm
    尹光志, 鲜学福, 金立平, 等. 1997. 地应力对冲击地压的影响及冲击危险区域评价的研究[J]. 煤炭学报, 22(2): 132-137. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB702.004.htm
    张建民, 李全生, 张勇, 等. 2019. 煤炭深部开采界定及采动响应分析[J]. 煤炭学报, 44(5): 1314-1325. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201905004.htm
    张镜剑, 傅冰骏. 2008. 岩爆及其判据和防治[J]. 岩石力学与工程学报, 27(10): 2034-2042. doi: 10.3321/j.issn:1000-6915.2008.10.010
    张镜剑. 2010. 岩爆五因素综合判据和岩爆分级[C]//新观点新学说学术沙龙文集51: 岩爆机理探索. 北京: 中国科学技术出版社.
    张如琯. 1981. 岩爆现象[J]. 煤炭科学技术, (6): 40-42. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ198106011.htm
    张少泉, 张诚, 修济刚, 等. 1993. 矿山地震研究述评[J]. 地球物理学进展, 8(3): 69-85. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ199303006.htm
    张万斌, 王淑坤, 吴耀焜, 等. 1986. 以动态破坏时间鉴定煤的冲击倾向[J]. 煤炭科学技术, (3): 31-34. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ198603009.htm
    张新荣, 刘文岗, 姜耀东, 等. 2008. 深井冲击地压特征及煤岩结构动力失稳分析[J]. 中国矿业, 17(1): 93-97. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA200801029.htm
    张志强, 关宝树, 翁汉民. 1998. 岩爆发生条件的基本分析[J]. 铁道学报, 20(4): 82-85. doi: 10.3321/j.issn:1001-8360.1998.04.015
    张倬元, 王士天, 王兰生. 1994. 工程地质分析原理(第二版)[M]. 北京: 地质出版社.
    张宗祜, 王大纯. 1965. 工程地质学的发展现状及今后发展方向的意见[J]. 科学通报, (6): 521-530. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB196506008.htm
    章梦涛, 徐曾和, 潘一山, 等. 1990. 冲击地压、煤和瓦斯突出的统一失稳理论探讨[C]//第二届全国岩石动力学学术会议论文选集.
    章梦涛. 1985. 冲击地压机理的探讨[J]. 阜新矿业学院学报, 4(S1): 65-72. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201402001.htm
    章梦涛. 1987. 冲击地压失稳理论与数值模拟计算[J]. 岩石力学与工程学报, 6(3): 15-22. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX198703001.htm
    赵本钧. 1981. 冲击地压的成因及予防措施[J]. 阜新矿业学院学报, (1): 63-71. https://www.cnki.com.cn/Article/CJFDTOTAL-FXKY198101006.htm
    赵本钧. 1987. 抚顺龙凤矿冲击地压的防治研究[J]. 岩石力学与工程学报, 6(1): 30-38. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX198701003.htm
    赵阳升, 冯增朝, 万志军. 2003. 岩体动力破坏的最小能量原理[J]. 岩石力学与工程学报, 22(11): 1781-1783. doi: 10.3321/j.issn:1000-6915.2003.11.005
    赵毅鑫, 姜耀东, 田素鹏. 2010. 冲击地压形成过程中能量耗散特征研究[J]. 煤炭学报, 35(12): 1979-1983. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201012006.htm
    中国新闻网. 2010. 历经840 h的四川锦屏二级水电站灾害救援结束[EB/OL]. (2010-01-22). http://news.sohu.com/20100122/n269779077.shtml.
    中华人民共和国行业标准编写组. 2009. 水电水利工程地下建筑物工程地质勘查技术规程(DL/T5415-2009)[S]. 北京: 中国电力出版社.
    中华人民共和国国家标准编写组. 2008. 水利水电工程地质勘察规范(GB50487-2008)[S]. 北京: 中国计划出版社.
    中华人民共和国国家标准编写组. 2010. 冲击地压测定、监测与防治方法——第2部分煤的冲击倾向性分类及指数的测定方法(GB/T 25217.2-2010)[S]. 北京: 中国标准出版社.
    中华人民共和国国家标准编写组. 2015. 工程岩体分级标准(GB T50218-2014)[S]. 北京: 中国计划出版社.
    中华人民共和国国家标准编写组. 2016. 水力发电工程地质勘察规范(GB50287-2016)[S]. 北京: 中国计划出版社.
    中华人民共和国行业标准编写组. 2019. 水电工程岩爆风险评估技术规范(NB/T 10143-2019)[S]. 北京: 中国水利水电出版社.
    周德培, 洪开荣. 1995. 太平驿隧洞岩爆特征及防治措施[J]. 岩石力学与工程学报, 14(2): 171-178. doi: 10.3321/j.issn:1000-6915.1995.02.011
    周光文, 刘文岗, 姜耀东, 等. 2008. 采场冲击地压的能量积聚释放特征分析[J]. 采矿与安全工程学报, 25(1): 73-78, 81. doi: 10.3969/j.issn.1673-3363.2008.01.015
    周航, 陈仕阔, 张广泽, 等. 2020. 基于功效系数法和地应力场反演的深埋长大隧道岩爆预测研究[J]. 工程地质学报, 28(6): 1386-1396. doi: 10.13544/j.cnki.jeg.2019-340
    周辉, 杨凡杰, 张传庆, 等. 2015. 岩爆和冲击地压数值模拟与评估预测方法[M]. 北京: 科学出版社.
    朱伯远. 1982. 岩爆现象及其处理[J]. 煤炭科学技术, (11): 35. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ198211011.htm
    朱维申. 1988. 岩石力学发展战略讨论会汇报要点[J]. 岩石力学与工程学报, 7(1): 92-96. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX198801008.htm
    朱之芳. 1985. 刚性试验机[M]. 北京: 煤炭工业出版社.
    朱之芳. 1986. 全应力-应变曲线在冲击地压中应用的试验研究[J]. 煤炭科学技术, (3): 35-40. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ198603011.htm
    祝方才. 2001. 坚硬岩石的岩爆孕育过程研究[D]. 长沙: 中南大学.
    邹德蕴, 姜福兴. 2004. 煤岩体中储存能量与冲击地压孕育机理及预测方法的研究[J]. 煤炭学报, 29(2): 159-163. doi: 10.3321/j.issn:0253-9993.2004.02.008
    邹光富, 毛英. 2007. 南水北调西线工程区地质背景与地质灾害问题[J]. 工程地质学报, 15(S1): 1-6. http://www.gcdz.org/article/id/10088
    左建平, 陈岩, 崔凡. 2018. 不同煤岩组合体力学特性差异及冲击倾向性分析[J]. 中国矿业大学学报, 47(1): 81-87. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201801011.htm
    左文智, 张齐桂. 1996. 地应力与地质灾害关系探讨[C]//第五届全国工程地质大会文集. 北京: 地震出版社.
  • 加载中
图(2)
计量
  • 文章访问数:  773
  • HTML全文浏览量:  170
  • PDF下载量:  201
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-03
  • 修回日期:  2021-08-07
  • 刊出日期:  2021-08-25

目录

    /

    返回文章
    返回