EXPERIMENTAL STUDY ON EFFECTS OF VEGETATION RESTORATION ON PHYSICAL AND MECHANICAL PROPERTIES OF DUMP SLOPE SOIL IN ALPINE COAL MINE AREAS
-
摘要: 本项研究针对高寒干旱环境下矿山排土场边坡植物增强土体强度和提高边坡稳定性作用贡献,以青海北部木里煤田江仓矿区作为研究区,通过采用组合种植草本垂穗披碱草(Elymus nutans Griseb.)+冷地早熟禾(Poa crymophila Keng)的方式,开展了组合种植植物根-土复合体与不含根系素土物理力学性质指标试验,并采用Pearson相关性分析方法评价了排土场边坡土体黏聚力c值与密度、含水率、含根量指标之间的相关程度。结果表明:相比较于不含根系素土,区内南、北两侧排土场边坡根-土复合体密度降低0.13~0.21g·cm-3,降低幅度为6.31%~11.05%,含水率增加0.40%~2.91%,增加幅度为4.47%~26.11%,根-土复合体抗剪强度指标黏聚力c值增加1.18~10.58 kPa,增加幅度为5.77%~62.11%,表明组合种植草本具有显著增强排土场边坡土体抗剪强度和提高边坡稳定性作用;通过进一步对排土场边坡根-土复合体黏聚力c值影响因素的相关性分析可知,根-土复合体黏聚力c值与含根量之间呈显著正相关关系(P<0.01),且含根量与黏聚力c值间的相关程度明显高于土体密度和含水率。该项研究结果对于高寒干旱环境矿山生态修复与地质灾害防治,具有理论研究价值和现实指导意义。Abstract: This paper aims to assess the contribution of roots of inter-planted herbaceous in reinforcing dump-slope soil in alpine mining areas and improving slope stability. It selects Jiangcang mining sites in Muli mining area as the testing area,where herbs of Elymus nutans Griseb. and Poa crymophila Keng are inter-planted. It uses a series of mechanical experiments to rooted soil as well as soil without root and determines,the physical and mechanical indices of the rooted soil as well as soil without root. It further conducts the Pearson correlation analysis to identify the correlation among cohesion of soil samples(rooted soil and soil without root),soil density,soil moisture content and root content. Results shows that the soil density of rooted soil,can decline from 0.13 to 0.21g ·cm-3 with the corresponding declining percent of 6.31%~11.05%,while moisture content and cohesion can increase from 0.40% to 2.91%(with the increase percent of 4.47%~26.11%) and from 1.18 to 10.58 kPa(with the increase percent of 5.77%~62.11%),respectively. In contrast to the soil without root,indicating inter-planted herbs roots are more capable in reinforcing loose soil and improving slope stability. Pearson correlation analysis shows cohesion in vegetated slopes is positively correlated with its root content(P<0.05). Its correlation coefficient value is absolutely higher than the counterparts of soil density,and moisture content,which suggests a closer relationship between root content and soil cohesion. This conclusion can be used as a reference in the projects of alpine mining area ecological restoration and has a theoretical and practical values in geo-hazards prevention and control.
-
图 1 研究区地理位置及排土场边坡示意图(据Li et al.(2019)修改)
Figure 1. Location of study area and aerial view of the dumps(originated from Li et al. (2019),with minor revision)
表 1 研究区2种草本植物生长量指标统计结果
Table 1. Measuring results of growth index of two herbaceous species in the study area
植物名称 生长量指标平均值 株高/cm 地径/mm 根径/mm 根数 垂穗披碱草 48.13±8.67 1.86±0.54 0.25±0.06 13.40±4.64 冷地早熟禾 32.55±8.03 1.24±0.46 0.20±0.09 16.69±7.38 表 2 试验区排土场边坡不含根系素土黏聚力c值与密度、含水率之间相关性分析结果
Table 2. Correlation among cohesion,soil density and moisture content of soil in bare slopes
取样位置 不含根系素土指标 黏聚力c值 南侧排土场边坡 黏聚力c值 1 密度 0.502* 含水率 -0.532* 北侧排土场边坡 黏聚力c值 1 密度 0.613** 含水率 -0.431* 表中“**”表示在0.01极显著水平下的相关性,“*”表示在0.05显著水平下的相关性,数值正负分别表示变量间呈正相关和负相关关系 表 3 试验区排土场边坡根-土复合体黏聚力c值与密度、含水率及含根量之间相关性分析结果
Table 3. Correlation among cohesion,soil density,moisture content and root content of soil in vegetated slope
取样位置 根-土复合体指标 黏聚力c值 南侧排土场边坡 黏聚力c值 1 密度 0.371* 含水率 -0.339* 含根量 0.431** 北侧排土场边坡 黏聚力c值 1 密度 0.348* 含水率 -0.334* 含根量 0.428** 表中“**”表示在0.01极显著水平下的相关性,“*”表示在0.05显著水平下的相关性,数值正负分别表示变量间呈正相关和负相关关系 -
Duan Q S, Zhao Y K, Yang S, et al. 2019. Effect of herb roots improving shear strength of unconfined compressed solum[J]. Acta Pedologica Sinica, 56(3): 650-660. doi: 10.11766/trxb201807030113 Gao Z A, Li P, Xiao J J, et al. 2020. Evaluation of shear strength of unsaturated loess using conventional direct shear test[J]. Journal of Engineering Geology, 28(2): 344-351. https://www.researchgate.net/publication/343584896_Evaluation_of_shear_strength_of_unsaturated_loess_using_direct_shear_test Guo Y. 2014. Research for vegetation restoration to Shi-Ma highway slope in high elevation & cold region[D]. Chengdu: Chengdu University of Technology. He C B, You Y, Wang D C, et al. 2016. Mechanical characteristics of soil-root composite and its influence factors in degenerated grassland[J]. Transactions of the Chinese Society for Agricultural Machinery, 47(4): 79-89. doi: 10.6041/j.issn.1000-1298.2016.04.012 Hu R L, Li X, Wang Y, et al. 2020. Research on engineering geomechanics and structural effect of soil-rock mixture[J]. Journal of Engineering Geology, 28(2): 255-281. doi: 10.13544/j.cnki.jeg.2020-077 Hu X S, Mao X Q, Zhu H L, et al. 2011. Slope protection with vegetation on Qinghail-Tibet plateau[M]. Beijing: Geological Publishing House. Jin L Q, Li X L, Sun H F, et al. 2020. Characteristics of vegetations and soils under different aspects of slag mountain in alpine mining area[J]. Soils, 52(4): 831-839. Li J, Sheng Y, Chen J, et al. 2010. Modeling the distribution of permafrost along a transportation corridor from Cetar to Muri in Qinghai Province[J]. Progress in Geography, 29(9): 1100-1106. doi: 10.11820/dlkxjz.2010.09.012 Li J, Wang X, Jia H X, et al. 2021. Assessing the soil moisture effects of planted vegetation on slope stability in shallow landslide-prone areas[J]. Journal of Soils and Sediments, 21 : 2551-2565. doi: 10.1007/s11368-021-02957-4 Li P F, Zhang X C, Hao M D, et al. 2019. Effects of vegetation restoration on soil physicochemical properties, enzyme activities, and fungal community of reconstructed soil in a mining area on Loess Plateau[J]. Bulletin of Soil and Water Conservation, 39(5): 1-7. Li X C, Sun D A, Xu Y F. 2019. Study on correlations of physical and mechanical property indexes of Yangzhou clays[J]. Journal of Engineering Geology, 27(2): 333-340. doi: 10.13544/j.cnki.jeg.2017-486 Li X L, Gao J, Zhang J. 2018. A topographic perspective on the distribution of degraded meadows and their changes on the Qinghai-Tibet Plateau, west China[J]. Land Degradation & Development, 29(6): 1574-1582. doi: 10.1002/ldr.2952 Li X L, Gao J, Zhang J, et al. 2019. Adaptive strategies to overcome challenges in vegetation restoration to coalmine wasteland in a frigid alpine setting[J]. Catena, 182: 104142. doi: 10.1016/j.catena.2019.104142 Lin J H, Huang M Y, Zhang L T, et al. 2020. Effects of Dicranopteris dichotoma roots on soil shear strength of red soil layer in Benggang[J]. Journal of Soil and Water Conservation, 34(6): 159-165. https://jglobal.jst.go.jp/en/detail?JGLOBAL_ID=202102288161295929 Liu B W, Tang Z F, Dong S G, et al. 2016. Vegetation recovery and groundwater pollution control of coal gangue field in a semi-arid area for a field application[J]. International Biodeterioration & Biodegradation, 128 : 134-140. https://www.sciencedirect.com/science/article/pii/S0964830517300719 Liu D, Yang Z Q, Rong Z Y, et al. 2020. Research on the reconstruction of slope herbaceous layer and soil improvement by hay transfer in open pit mine[J]. Environment and Sustainable Development, 45(3): 144-148. Liu D Y. 2013. Risk assessment of geo-ecological environment in Jiangcang diggings Muli coal field, Qinghai Province[D]. Beijing: Chinese Academy of Geological Sciences. Liu Y B, Hu X S, Yu D M, et al. 2020. Distribution characteristics of combined herb and shrub roots in loess area of Xining Basin and their effect on enhancing soil shear strengths[J]. Journal of Engineering Geology, 28(3): 471-481. doi: 10.13544/j.cnki.jeg.2019-114 Mao X R, Xu P H, Cao Y E, et al. 2019. Experimental study on shear strength of plant roots in open-pit coal mine wastelands[J]. Science of Soil and Water Conservation, 17(6): 103-110. https://en.cnki.com.cn/Article_en/CJFDTotal-STBC201906013.htm Pan W D, Luo J Y, Pan W L, et al. 2021. The law of instability and failure of the slope of dumping site: A case study in Inner Mongolia, China[J]. Shock and Vibration, 2021: 5261279. Qian D W, Yan C Z, Xiu L N. 2020. Land cover change and landscape pattern vulnerability response in Muli mining and its surrounding areas in the Qinghai-Tibet Plateau[J]. Journal of Glaciology and Geocryology, 42(4): 1334-1343. https://oversea.cnki.net/kcms/detail/detail.aspx?filename=BCDT202004024&dbcode=CJFD&dbname=CJFD2020&v= Ranjan V, Sen P, Kumar D, et al. 2017. Enhancement of mechanical stability of waste dump slope through establishing vegetation in a surface iron ore mine[J]. Journal of Mining Science, 53(2): 377-388. doi: 10.1134/S106273911702226X Shan W, Guo Y, Liu H J, et al. 2012. Effects of soil water content and density on slope reinforcement by plant roots[J]. Journal of Northeast Forestry University, 40(12): 111-113. https://en.cnki.com.cn/Article_en/CJFDTotal-DBLY201212026.htm The National Standards Compilation Group of the People's Republic of China. 2019. Standard for soil test method(GB/T50123-2019)[S]. Beijing: China Planning Press. Xue H L, Tang B, Zhang J Y, et al. 2019. Effects of Hypericum perforatum roots on shear strength of slope soil[J]. Bulletin of Soil and Water Conservation, 39(3): 87-92. Yang X G, Li X L, Jin L Q, et al. 2019. Effectiveness of different artificial restoration on measures for soil and vegetation recovery on coal mine tailings in alpine area[J]. Acta Prataculturae Sinica, 28(3): 1-11. doi: 10.11686/cyxb2018609 Yang Y Q, Hu X S, Li X L, et al. 2018. An experimental study of the soil shear strength reinforcement of a mine dump slope by herbaceous root systems in alpine regions[J]. Hydrogeology & Engineering Geology, 45(6): 105-113. doi: 10.16030/j.cnki.issn.1000-3665.2018.06.16 Zhang D C, Liu X X, Tang X R. 2020. Simple analysis of influence of alpine cold environment on openpit mining of the Muli coal field in Qinghai[J]. Acta Geological Sichuan, 40(1): 75-79. Zheng M, Guo Y, Wang L M. 2021. Effects of water regulating deficit on root growth, development and photosynthetic characteristics of Ginkgo biloba Seedlings[J]. Journal of Shandong Agricultural University(Natural Science Edition), 52(3): 430-435. Zhou D P, Zhang J Y, 2003. Vegetation slope protection technology[M]. Beijing: China Communications Press. Zhou L H, Yang Y Q, Hu X S, et al. 2019. Shear strength characteristics of slope soil in dumping site in high-cold mining area[J]. Coal Geology & Exploration, 47(6): 144-152. doi: 10.3969/j.issn.1001-1986.2019.06.022 Zong Q L, Feng B, Yuan J W, et al. 2019. Study on shear strength performance of soil mass enhanced by root system of desert vegetation[J]. Water Resources and Hydropower Engineering, 50(10): 169-177. http://www.slsdjs.com/EN/abstract/abstract11547.shtml Zou H. 2019. Study on soil ecological environment restoration strategy of abandoned mining area[J]. Arabian Journal of Geosciences, 12(23): 717. doi: 10.1007/s12517-019-4873-3 段青松, 赵燚柯, 杨松, 等. 2019. 不同草本植物根系提高无侧限受压土体的抗剪强度[J]. 土壤学报, 56(3): 650-660. https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201903014.htm 高志傲, 李萍, 肖俊杰, 等. 2020. 利用常规直剪试验评价非饱和黄土抗剪强度[J]. 工程地质学报, 28(2): 344-351. doi: 10.13544/j.cnki.jeg.2019-238 郭勇. 2014. 高海拔严寒地区石马公路边坡植被防护研究[D]. 成都: 成都理工大学. 贺长彬, 尤泳, 王德成, 等. 2016. 退化草地复合体力学特性与影响因素研究[J]. 农业机械学报, 47(4): 79-89. https://www.cnki.com.cn/Article/CJFDTOTAL-NYJX201604012.htm 胡夏嵩, 毛小青, 朱海丽, 等, 2011. 青藏高原植被护坡[M]. 北京: 地质出版社. 胡瑞林, 李晓, 王宇, 等. 2020. 土石混合体工程地质力学特性及其结构效应研究[J]. 工程地质学报, 28(2): 255-281. doi: 10.13544/j.cnki.jeg.2020-077 金立群, 李希来, 孙华方, 等. 2020. 高寒矿区排土场不同坡向植被和土壤特征研究[J]. 土壤, 52(4): 831-839. https://www.cnki.com.cn/Article/CJFDTOTAL-TURA202004025.htm 李静, 盛煜, 陈继, 等. 2010. 青海省柴达尔-木里地区道路沿线多年冻土分布模拟[J]. 地理科学进展, 29(9): 1100-1106. https://www.cnki.com.cn/Article/CJFDTOTAL-DLKJ201009014.htm 李鹏飞, 张兴昌, 郝明德, 等. 2019. 植被恢复对黄土高原矿区重构土壤理化性质、酶活性以及真菌群落的影响[J]. 水土保持通报, 39(5): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-STTB201905001.htm 李旭昶, 孙德安, 徐永福. 2019. 扬州土物理与力学性质指标的相关性分析[J]. 工程地质学报, 27(2): 333-340. doi: 10.13544/j.cnki.jeg.2017-486 林嘉辉, 黄梦元, 张莉婷, 等. 2020. 芒萁根系对崩岗红土层土壤抗剪强度的影响[J]. 水土保持学报, 34(6): 159-165. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQS202006023.htm 刘丹, 杨兆青, 荣正阳, 等. 2020. 露天煤矿排土场干草转移对坡面草本层重建与土壤改良研究[J]. 环境与可持续发展, 45(3): 144-148. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKD202003038.htm 刘德玉. 2013. 青海省木里煤田江仓矿区地质生态环境风险评价[D]. 北京: 中国地质科学院. 刘亚斌, 胡夏嵩, 余冬梅, 等. 2020. 西宁盆地黄土区草本和灌木组合根系分布特征及其增强土体抗剪强度效应[J]. 工程地质学报, 28(3): 471-481. doi: 10.13544/j.cnki.jeg.2019-114 毛旭芮, 胥鹏海, 曹月娥, 等. 2019. 露天煤矿废弃地植物根系抗剪强度试验[J]. 中国水土保持科学, 17(6): 103-110. https://www.cnki.com.cn/Article/CJFDTOTAL-STBC201906013.htm 钱大文, 颜长珍, 修丽娜. 2020. 青藏高原木里矿区及其周边土地覆被变化及景观格局脆弱性响应[J]. 冰川冻土, 42(4): 1334-1343. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT202004024.htm 单炜, 郭颖, 刘红军, 等. 2012. 土体含水率和相对密实度变化与植物根系固坡效果[J]. 东北林业大学学报, 40(12): 111-113. doi: 10.3969/j.issn.1000-5382.2012.12.026 薛海龙, 唐彪, 张竞元, 等. 2019. 尖萼金丝桃根系对边坡土体抗剪强度的影响[J]. 水土保持通报, 39(3): 87-92. https://www.cnki.com.cn/Article/CJFDTOTAL-STTB201903015.htm 杨鑫光, 李希来, 金立群, 等. 2019. 不同人工恢复措施下高寒矿区煤矸石山植被和土壤恢复效果研究[J]. 草业学报, 28(3): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-CYXB201903001.htm 杨幼清, 胡夏嵩, 李希来, 等. 2018. 高寒矿区草本植物根系增强排土场边坡土体抗剪强度试验研究[J]. 水文地质工程地质, 45(6): 105-113. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201806016.htm 郑淼, 郭毅, 王丽敏. 2021. 水分调亏对银杏幼苗根系生长发育和光合特性的影响[J]. 山东农业大学学报(自然科学版), 52(3): 430-435. https://www.cnki.com.cn/Article/CJFDTOTAL-SCHO202103015.htm 张大春, 刘晓雪, 唐小容. 2020. 浅析高海拔、高寒环境对青海木里煤田露天矿区开采的影响[J]. 四川地质学报, 40(1): 75-79. doi: 10.3969/j.issn.1006-0995.2020.01.016 中华人民共和国国家标准编写组. 2019. 土工试验方法标准(GB/T50123-2019)[S]. 北京: 中国计划出版社. 周德培, 张俊云. 2013. 植被护坡工程技术[M]. 北京: 人民交通出版社. 周林虎, 杨幼清, 胡夏嵩, 等. 2019. 高寒矿区排土场边坡土体抗剪强度特征[J]. 煤田地质与勘探, 47(6): 144-152. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT201906022.htm 宗全利, 冯博, 袁寄望, 等. 2019. 荒漠植被根系增强土体抗剪强度性能研究[J]. 水利水电技术, 50(10): 169-177. https://www.cnki.com.cn/Article/CJFDTOTAL-SJWJ201910023.htm -