SEISMIC RESPONSE OF SUBSEA TUNNELS CONSIDERING SEAWATER SEABED COUPLING EFFECT
-
摘要: 在近海海域修建海底隧道必须考虑地震灾害的潜在威胁,进行海底隧道地震响应研究时考虑海水动水压力的影响将更贴合实际情况。为研究考虑海水-海床耦合效应的海底隧道地震响应规律,本文基于某海峡海底盾构隧道工程,考虑了海床土体和隧道混凝土的动力非线性特性以及海水与海床之间的耦合效应,建立了海水-海床-隧道动力相互作用的有限元模型,研究了在不同地震动输入、不同地震激励方向、不同上覆水深条件下海底隧道的地震响应规律。结果表明:使用ABAQUS中的声学模块能够有效地实现流-固耦合作用的模拟;在水平地震作用下,隧道在左右拱肩及拱脚位置应力集中显著;地震作用时水域最大动水压力出现在隧道正上方左右两侧海床表面处;当处于双向地震激励时,海床表面动水压力显著增大,隧道各点处的应力峰值也随之显著增大;相较于高频丰富的地震动,低频丰富的地震动输入对海底隧道的影响更大;海底隧道地震损伤随着水深增加逐渐减小。研究结果有助于更好地掌握实际海底隧道地震响应规律。Abstract: The potential threat of earthquake disaster should be considered in the construction of subsea tunnel in offshore areas. Considering the influence of seawater hydrodynamic pressure can be more in line with the actual situation when analyzing the seismic response of subsea tunnel. A seismic analysis model of water-seabed-tunnel is established, which takes into account the nonlinearity of soil and the fluid-structure interaction between seawater and seabed. The seismic response of undersea tunnel under different seismic excitations and water depths is studied. The results show that the acoustic module can simulate the fluid-structure interaction well. Under the action of horizontal earthquake, the stress of tunnel is mainly concentrated at the arch shoulder and arch foot. The maximum hydrodynamic pressure in the calculated area under earthquake action occurs on the left and right sides of the seabed above the tunnel. Under bidirectional seismic excitation, the hydrodynamic pressure on the seabed surface increases significantly, and the stress peak at each point of the tunnel also increases significantly. The seismic response of subsea tunnel under the earthquake with rich low frequency component is much stronger than that with rich high frequency component. Seismic damage of subsea tunnel decreases with the increasing water depth. The results are of some reference value for understanding the actual seismic response law of the undersea tunnel.
-
Key words:
- Subsea tunnel /
- Fluid-solid interaction /
- Seismic response /
- Hydrodynamic pressure /
- Seismic damage
-
图 3 地震动的加速度时程及傅里叶谱
a. MYGH03水平加速度时程;b. MYGH03竖向加速度时程;c. MYGH03水平傅里叶谱;d. MYGH04水平加速度时程;e. MYGH04竖向加速度时程;f. MYGH04水平傅里叶谱;g. MYGH04-2水平加速度时程;h. MYGH04-2竖向加速度时程;i. MYGH04-2水平傅里叶谱;j. FKS007水平加速度时程;k. FKS007竖向加速度时程;l. FKS007水平傅里叶谱
Figure 3. Acceleration time histories and Fourier spectra of the input bedrock motions
表 1 混凝土损伤模型参数
Table 1. Parameters of the concrete from the plasticity test
膨胀角/(°) 流动势偏心率 单双轴抗压强度比 Kc 黏性系数 30 0.1 1.16 0.6667 0.0005 表 2 海床土的本构模型参数
Table 2. Parameters of the constitutive model of the subsea soils
土层 厚度/m 密度/kg·m-3 初始剪切模量G/MPa A B γ0/×10-4 粉砂 10 1747 40.9 1.13 0.92 4.54 粉土 60 1995 159.8 1.17 0.44 5.13 粉质黏土 20 2031 187.7 1.27 0.46 8.17 熔结凝灰岩 10 1987 539.4 1.30 0.47 8.95 -
Chen G X, Lu Y J, Wang Y Z, et al. 2021.3D nonlinear seismic response characteristics for the junction of undersea shield tunnel-shaft[J]. Chinese Journal of Geotechnical Engineering, 43 (8): 1382-1390. Chen G X, Ruan B, Zhao K, et al. 2020. Nonlinear response characteristics of undersea shield tunnel subjected to strong earthquake motions[J]. Journal of Earthquake Engineering, 24 (3): 351-380. doi: 10.1080/13632469.2018.1453416 Chen G X, Sun R R, Zhao D F, et al. 2019. Longitudinal seismic response charateristics of seabed shield tunnels using submodeling analysis[J]. Chinese Journal of Geotechnical Engineering, 41 (11): 1983-1991. Chen G X, Wang Y Z, Zhao D F, et al. 2021. A new effective stress method for nonlinear site response analyses[J]. Earthquake Engineering & Structural Dynamics, 50 (6): 1595-1611. doi: 10.1002/eqe.3414 Chen X J, Jing L P, Cui J, et al. 2020. Shaking table model test study on seismic response of animmersed-tube tunnel[J]. Water Resources and Hydropower Engineering, 51 (4): 88-97. Cheng X S, Li G L, Chen J, et al. 2018. Seismic response of a submarine tunnel under the action of a sea wave[J]. Marine Structures, 60 : 122-135. doi: 10.1016/j.marstruc.2018.03.004 Cui J, Lu Y B, Qu J X, et al. 2020. Influencing factors analysis of seismic responses of water immersed tunnel[J]. Journal of Southwest Jiaotong University, 55 (6): 1224-1230. Gao G Y, Geng J L, Bi J W, et al. 2019. Effect of subway induced environmental vibration on building site through in-situ measurement[J]. Journal of Engineering Geology, 27 (05): 1116-1121. http://en.cnki.com.cn/Article_en/CJFDTotal-GCDZ201905023.htm Gong C Y, Chen G X, Zhu J, et al. 2018. Effect of constitutive model characteristics on nonlinear seismic response of deep site[J]. Journal of Disaster Prevention and Mitigation Engineering, 38 (3): 448-457. http://en.cnki.com.cn/Article_en/CJFDTotal-DZXK201803007.htm Liu J B, Gu Y, Du Y X. 2006. Consist viscous-spring artificial boundaries and viscous-spring boundary elements[J]. Chinese Journal of Geotechnical Engineering, 28 (9): 1070-1075. http://www.researchgate.net/publication/279574696_Consistent_viscous-spring_artificial_boundaries_and_viscous-spring_boundary_elements Liu Y, Chen G X, Kong M Y. 2013. Seismic response of undersea tunnels to hydrodynamic and hydrostatic pressures[J]. Chinese Journal of Geotechnical Engineering, 35 (S2): 357-362. http://en.cnki.com.cn/Article_en/CJFDTOTAL-YTGC2013S2062.htm Miao Y, Yao E L, Ruan B, et al. 2018. Seismic response of shield tunnel subjected to spatially varying earthquake ground motions[J]. Tunnelling and Underground Space Technology, 77 : 216-226. doi: 10.1016/j.tust.2018.04.006 Rawat A, Mittal V, Chakraborty T, et al. 2019. Earthquake induced sloshing and hydrodynamic pressures in rigid liquid storage tanks analyzed by coupled acoustic-structural and Euler-Lagrange methods[J]. Thin-Walled Structures, 134 : 333-346. doi: 10.1016/j.tws.2018.10.016 Shang Y J, Jiang Y, Zhao B, et al. 2021. Numerical simulation of deformation and failure of mixed ground with different depth in extensional basins[J/OL]. Journal of Engineering Geology, 2021-07-20, https://doi.org/10.13544/j.cnki.jeg.2021-230. Shekari M R. 2021. A coupled numerical approach to simulate the effect of earthquake frequency content on seismic behavior of submarine tunnel[J]. Marine Structures, 75: 102848. doi: 10.1016/j.marstruc.2020.102848 Tang S H, Zhang X P, Liu H, et al. 2020. Research and prospect on engineering difficulties and key technologies for underwater shield tunnel in complex ground[J/OL]. Journal of Engineering Geology, 2020-06-03, https://doi.org/10.13544/j.cnki.jeg.2020-044. The National Standards Compilation Group of People's Republic of China. 2011. Code for design of concrete structures(GB50010-2010)[S]. Beijing: China Architecture and Building Press. Wang J, Liu H B, Zou Y, et al. 2020. Response analysis of twin tunnels under horizontal and vertical earthquake loading[J]. Technology for Earthquake Disaster Prevention, 15 (4): 670-683. Westergaard H M. 1933. Water pressures on dams during earthquakes[J]. Trans Asce, 98 (2): 418-432. http://www.researchgate.net/publication/287494171_Water_pressure_on_dams_during_earthquakes/download Xu Q, Bai C Y, Li W Y, et al. 2020. Response analysis of deformation and internal force of underground utility tunnel crossing active ground fracture[J]. Journal of Engineering Geology, 29 (5): 1632-1639. Yuan Y, Yu H T, Yan X, et al. 2016. Multi-point shaking table test simulation and analysis of a super-long immersed tunnel[J]. China Journal of Highway and Trasport, 29 (12): 157-165. http://www.researchgate.net/publication/316937072_Multi-point_shaking_table_test_simulation_and_analysis_of_a_super-long_immersed_tunnel Zeinoddini M, Parke G A R, Sadrossadat S M. 2012. Free-spanning submarine pipeline response to severe ground excitations: water-pipeline interactions[J]. Journal of Pipeline Systems Engineering and Practice, 3 (4): 135-149. doi: 10.1061/(ASCE)PS.1949-1204.0000098 Zhang F, Ma J X, Nan Y. 2021. Parameters selection verification calculation of concrete plastic damage model[J]. China Concrete and Cement Products, (1): 7-11, 29. Zhang R L, Lou M L, Yuan Y. 2014. Three-dimensional seismic response analysis of soil-undersea immersed tunnel system[J]. Journal of Hunan University(Natural Sciences), 41 (4): 25-32. http://en.cnki.com.cn/Article_en/CJFDTOTAL-HNDX201404004.htm Zhao D F, Ruan B, Chen G X, et al. 2017. Validation of modified irregular loading-unloading rules based on Davidenkov skeleton curve and its equivalent shear strain algorithm implemented in ABAQUS[J]. Chinese Journal of Geotechnical Engineering, 39 (5): 888-895. http://en.cnki.com.cn/Article_en/CJFDTotal-YTGC201705018.htm Zhu J Q. 1988. Coupled motion between sea water and sea bed-soil under earthquake action[J]. Earthquake Engineering and Engineering Vibration, 8 (2): 37-43. http://www.cnki.com.cn/Article/CJFD1988-DGGC198802004.htm Zhu S N, Li W H, Vincent W Lee, et al. 2020. Seismic response of undersea lining tunnels under incident plane P waves[J]. Chinese Journal of Geotechnical Engineering, 42 (8): 1418-1427. 陈国兴, 卢艺静, 王彦臻, 等. 2021. 海底盾构隧道-竖井连接部位三维非线性地震反应特性[J]. 岩土工程学报, 43 (8): 1382-1390. 陈国兴, 孙瑞瑞, 赵丁凤, 等. 2019. 海底盾构隧道纵向地震反应特征的子模型分析[J]. 岩土工程学报, 41 (11): 1983-1991. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201911003.htm 程新俊, 景立平, 崔杰, 等. 2020. 沉管隧道振动台模型地震反应试验研究[J]. 水利水电技术, 51 (4): 88-97. https://www.cnki.com.cn/Article/CJFDTOTAL-SJWJ202004010.htm 崔杰, 陆耀波, 渠建新, 等. 2020. 水域沉管隧道地震响应的影响因素分析[J]. 西南交通大学学报, 55 (6): 1224-1230. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT202006012.htm 高广运, 耿建龙, 毕俊伟, 等. 2019. 地铁环境振动对建筑场地影响实测分析[J]. 工程地质学报, 27 (5): 1116-1121. doi: 10.13544/j.cnki.jeg.2019050 龚彩云, 陈国兴, 朱姣, 等. 2018. 本构模型特性对深厚场地非线性地震反应的影响[J]. 防灾减灾工程学报, 38 (3): 448-457. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK201803007.htm 刘晶波, 谷音, 杜义欣. 2006. 一致黏弹性人工边界及黏弹性边界单元[J]. 岩土工程报, 28 (9): 1070-1075. https://www.cnki.com.cn/Article/CJFDTOTAL-SFXB200905031.htm 刘勇, 陈国兴, 孔梦云. 2013. 静、动水压力条件下海底隧道地震反应特性分析[J]. 岩土工程学报, 35 (S2): 357-362. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2013S2062.htm 尚彦军, 蒋毅, 赵斌, 等. 2021. 拉张盆地不同埋深复合地层中隧道围岩变形破坏数值模拟研究[J/OL]. 工程地质学报, 2021-07-20, https://doi.org/10.13544/j.cnki.jeg.2021-230. 唐少辉, 张晓平, 刘浩, 等. 2021. 复杂地层水下盾构隧道工程难点及关键技术研究与展望[J]. 工程地质学报, 29(5): 1477-1487. doi: 10.13544/j.cnki.jeg.2020-044 王杰, 刘华北, 邹炎, 等. 2020. 水平及竖向地震共同作用下双线隧道的响应分析[J]. 震灾防御技术, 15 (4): 670-683. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZFY202004002.htm 徐强, 白超宇, 李文阳, 等. 2020. 地下综合管廊穿越活动地裂缝变形与内力的响应分析[J]. 工程地质学报29 (5): 1632-1639. doi: 10.13544/j.cnki.jeg.2020-384 袁勇, 禹海涛, 燕晓, 等. 2016. 超长沉管隧道多点振动台试验模拟与分析[J]. 中国公路学报, 29 (12): 157-165. doi: 10.3969/j.issn.1001-7372.2016.12.020 张飞, 马建勋, 南燕. 2021. 混凝土塑性损伤模型参数的选取与验证计算[J]. 混凝土与水泥制品, (1): 7-11, 29. https://www.cnki.com.cn/Article/CJFDTOTAL-HNTW202101002.htm 张如林, 楼梦麟, 袁勇. 2014. 土-海底沉管隧道体系三维地震响应分析[J]. 湖南大学学报(自然科学版), 41 (4): 25-32. https://www.cnki.com.cn/Article/CJFDTOTAL-HNDX201404004.htm 赵丁凤, 阮滨, 陈国兴, 等. 2017. 基于Davidenkov骨架曲线模型的修正不规则加卸载准则与等效剪应变算法及其验证[J]. 岩土工程学报, 39 (5): 888-895. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201705018.htm 中华人民共和国国家标准编写组. 2011. 混凝土结构设计规范(GB50010-2010)[S]. 北京: 中国建筑工业出版社. 朱镜清. 1988. 地震作用下海水与海床土的耦合运动[J]. 地震工程与工程振动, 8 (2): 37-43. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC198802004.htm 朱赛男, 李伟华, Lee V W, 等. 2020. 平面P波入射下海底衬砌隧道地震响应解析分析[J]. 岩土工程学报, 42 (8): 1418-1427. -