级配对煤矸石路基填料压实与强度特性的影响试验研究

张宗堂 高文华 刘昌平 刘泽 冯锡祥

张宗堂, 高文华, 刘昌平, 等. 2023. 级配对煤矸石路基填料压实与强度特性的影响试验研究[J]. 工程地质学报, 31 (5):1774-1781. doi: 10.13544/j.cnki.jeg.2021-0564
引用本文: 张宗堂, 高文华, 刘昌平, 等. 2023. 级配对煤矸石路基填料压实与强度特性的影响试验研究[J]. 工程地质学报, 31 (5):1774-1781. doi: 10.13544/j.cnki.jeg.2021-0564
Zhang Zongtang, Gao Wenhua, Liu Changping, et al. 2023. Experimental study of gradation effect on compaction and strength characteristics of coal gangue subgrade filler[J]. Journal of Engineering Geology, 31(5):1774-1781. doi: 10.13544/j.cnki.jeg.2021-0564
Citation: Zhang Zongtang, Gao Wenhua, Liu Changping, et al. 2023. Experimental study of gradation effect on compaction and strength characteristics of coal gangue subgrade filler[J]. Journal of Engineering Geology, 31(5):1774-1781. doi: 10.13544/j.cnki.jeg.2021-0564

级配对煤矸石路基填料压实与强度特性的影响试验研究

doi: 10.13544/j.cnki.jeg.2021-0564
基金项目: 

国家自然科学基金项目 52208341

湖南省自然科学基金项目 2020JJ4019

湖南省自然科学基金项目 2023JJ40293

湖南省科技人才托举工程项目——“小荷”科技人才项目 2023TJ-X74

浙江省交通科技项目 2020004

详细信息
    作者简介:

    张宗堂(1991-),男,博士,讲师,主要从事岩土工程方面的教学与研究.E-mail: zzt@hnust.edu.cn

    通讯作者:

    高文华(1962-),男,博士,教授,博士生导师,主要从事岩土工程和地下结构工程的教学与研究.E-mail: wenhuagao@163.com

  • 中图分类号: TU45

EXPERIMENTAL STUDY OF GRADATION EFFECT ON COMPACTION AND STRENGTH CHARACTERISTICS OF COAL GANGUE SUBGRADE FILLER

Funds: 

the National Natural Science Foundation of China 52208341

the Natural Science Foundation of Hunan Province 2020JJ4019

the Natural Science Foundation of Hunan Province 2023JJ40293

Xiaohe Sci-Tech Talents Special Funding under Hunan Provincial Sci-Tech Talents Sponsorship Program 2023TJ-X74

the Transportation Technology Foundation of Zhejiang Province 2020004

  • 摘要: 为研究级配对煤矸石路基填料压实与强度特性的影响,以湖南湘潭某废弃煤矿的煤矸石为研究对象,通过大型振动压实试验与大型三轴试验研究了煤矸石路基填料压实与强度特性的级配效应。基于分形模型级配方程,求解得到了良好级配的取值界限,并分析了采用该级配方程进行级配设计的优越性。级配对煤矸石路基填料的压实与强度均存在较大影响。随着细颗粒含量的增加,最大干密度与偏应力均先增大后减小,反映出煤矸石路基填料的颗粒级配存在最优区间。在此基础上,获取了煤矸石路基填料的最优级配区间。试验结果表明,通过大型三轴试验与振动压实试验获取的煤矸石路基填料最优级配区间基本一致,考虑到大型三轴试验成本较高,可通过振动击实试验直接获取其最优级配。
  • 图  1  湘潭市某煤矿煤矸石

    Figure  1.  Coal gangue of a coal mine in Xiangtan

    图  2  煤矸石各粒组效果图

    Figure  2.  Each particle group of coal gangue

    图  3  表面振动压实仪

    Figure  3.  The surface vibration compaction equipment

    图  4  大型动静三轴试验机

    Figure  4.  The large dynamic and static triaxial apparatus

    图  5  试验设计级配曲线

    Figure  5.  The gradation curve of test design

    图  6  CuCcD的变化

    Figure  6.  The evolution of Cu and Cc versus D

    图  7  最大干密度与分形维数的关系曲线

    Figure  7.  The relationship between the maximum dry density and fractal dimension

    图  8  SG计算示意图

    Figure  8.  Diagram of SG calculation

    图  9  最优级配区间

    Figure  9.  The range of the optimal gradation

    图  10  煤矸石路基填料强度特性级配效应

    Figure  10.  Grading effect of strength behavior for coal gangue subgrade filler

    图  11  破坏强度与分形维数的关系曲线

    Figure  11.  The relationship between failure strength and fractal dimension

  • Chen Q, Peng Y L, Cao Z Z, et al. 2019. Experimental study on dynamic characteristics of expansive soil from Yanzhou-Shijiusuo railway roadbed under cyclic loading[J]. Journal of Engineering Geology, 27(4): 737-744.
    Chen R P, Wang P F, Liu P, et al. 2020. Experimental study on soil-water characteristic curves of subgrade coal gangue filler[J]. Rock and Soil Mechanics, 41(2): 372-378.
    Gao W H, Xu L, Zhang Z T, et al. 2023. Research on the influencing factors of red sandstone disintegration during drying-wetting cycles[J]. Journal of Engineering Geology, 31(5): 1597-1604.
    García-De-La-Oliva J L, Moreno-Robles J. 2019. Granular sub-ballast compaction control methods in high-speed railway lines. Spanish experience[J]. Transportation Geotechnics, 19: 135-145. doi: 10.1016/j.trgeo.2019.03.003
    Guo W L, Zhu J G, Yu T, et al. 2018. Application of gradation equation for coarse-grained soil[J]. Rock and Soil Mechanics, 39(10): 3661-3667.
    He J Q, Jin M, Yang J S. 2008. A study on the road engineering mechanical properties of coal gangue mixed with clay and the filling techniques[J]. China Civil Engineering Journal, 41(5): 87-93.
    Leng W M, Mei H H, Nie R S, et al. 2016. Static characteristic research on coarse grained soil filling in heavy haul railway subgrade bed[J]. Journal of Railway Engineering Society, 33(11): 23-28.
    Leng W M, Xiao Y J, Nie R S, et al. 2017. Investigating strength and deformation characteristics of heavy-haul railway embankment materials using large-scale undrained cyclic triaxial tests[J]. International Journal of Geomechanics, 17(9): 04017074. doi: 10.1061/(ASCE)GM.1943-5622.0000956
    Li C, He C R, Wang C, et al. 2008. Study of scale effect of large-scale triaxial test of coarse-grained meterials[J]. Rock and Soil Mechanics, 29(S1): 563-566.
    Li D S, Liu D S. 2015. Comparative test research on the shear strength characteristic of gangue[J]. Chinese Journal of Rock Mechanics and Engineering, 34(S1): 2808-2816.
    Li L, Long G, Bai C, et al. 2020. Utilization of coal gangue aggregate for railway roadbed construction in practice[J]. Sustainability, 12: 4583. doi: 10.3390/su12114583
    Qiu Y, Miao L C, Liu S Y. 2002. Application study and practice of coal gangue applied in road construction[J]. Journal of Highway and Transportation Research and Development, 19(2): 1-5.
    Ren F F, He J Y, Wang G, et al. 2018. Numerical analysis of dynamic characteristics of coarse grained soils based on Cyclic-mobility constitutive model[J]. Rock and Soil Mechanics, 39(12): 4627-4641.
    Shang Y Y, Xu L R, Huang Y L, et al. 2020. Laboratory tests on dynamic modulus and damping ratio of cement-stabilized expansive soil as subgrade filling of heavy haul railway[J]. Journal of Engineering Geology, 28(1): 103-110.
    Shi C L, Sha A M, Yan Q B, et al. 2016. Research and application for road construction technology of coal gangue[M]. Beijing: China Communications Press.
    Talbot A N, Richart F E. 1923. The strength of concrete-its relation to the cement, aggregates and water[J]. Illinois Univ Eng Exp Sta Bulletin, 137: 1-118.
    The Professional Standard Compilation Group of the people's Republic of China. 2002. Code for design of roller compacted earth rock dams(Sl274-2001)[S]. Beijing: China Water Power Press.
    The Professional Standard Compilation Group of the people's Republic of China. 2007. Specification for highway geotechnical test(JTG E40-2007)[S]. Beijing: China Communications Press.
    Wang R, Cheng J J, Qi Y L, et al. 2020. Experimental study on micro-expansion mechanism of roadbed filler for high-speed railway ballastless track[J]. Journal of Engineering Geology, 28(6): 1350-1358.
    Wu E L, Zhu J G, Guo W L, et al. 2020. Experimental study of compaction characteristics of coarse-grained soil based on gradation equation[J]. Rock and Soil Mechanics, 41(1): 214-220.
    Wu E, Zhu J, Guo W, et al. 2020. Effect of gradation on the compactability of coarse-grained soils[J]. KSCE Journal of Civil Engineering, 24(2): 356-364. doi: 10.1007/s12205-020-1936-7
    Yan C P, Long Z L, Zhou Y C, et al. 2020. Investigation on the effects of confining pressure and particle size of shear characteristics of calcareous sand[J]. Rock and Soil Mechanics, 41(2): 581-591, 634.
    Yu X J, Fang Z, Bao C Y, et al. 2005. Experiment study on dynamic strength of gangue[J]. Rock and Soil Mechanics, 26(S1): 102-104.
    Zhang T J, Shang H B, Li S G, et al. 2018. An seepage experimental study on broken gangue under step loading during creep process[J]. Journal of Mining & Safety Engineering, 35(1): 188-196.
    Zhang Z T, Gao W H, Tang X Y, et al. 2019a. Characteristics of grading entropy of disintegration of swelling rock under dry-wet cycles[J]. Journal of Water Resources & Water Engineering, 30(6): 218-224.
    Zhang Z T, Gao W H, Zhang Z M, et al. 2019b. Disintegration characteristics and fractal features of swelling rock during dry-wet cycles[J]. Journal of Railway Science and Engineering, 16(4): 930-937.
    Zhou N, Yao Y N, Song W J, et al. 2020. Present situation and prospect of coal gangue treatment technology[J]. Journal of Mining & Safety Engineering, 37(1): 136-146.
    Zhu J G, Guo W L, Wang Y L, et al. 2015. Equation for soil gradation curve and its applicability[J]. Chinese Journal of Geotechnical Engineering, 37(10): 1931-1936.
    Zhu J G, Guo W L, Wen Y F, et al. 2018. New gradation equation and applicability for particle-size distributions of various soils[J]. International Journal of Geomechanics, 18(2): 0001082.
    Zhu S, Wang J, Zhong C X, et al. 2019. Experimental study on scale effect of the dry density of rockfill material[J]. Chinese Journal of Rock Mechanics and Engineering, 38(5): 1073-1080.
    Zhu S, Zhang L C. 2019. A gradation scale method for continuously distributing super-diameter coarse-grained soils and its application conditions[J]. Chinese Journal of Rock Mechanics and Engineering, 38(9): 1895-1904.
    陈强, 彭永良, 曹正正, 等. 2019. 循环荷载下兖石铁路路基膨胀土的动力特性试验研究[J]. 工程地质学报, 27(4): 737-744. doi: 10.13544/j.cnki.xq2019030
    陈仁朋, 王朋飞, 刘鹏, 等. 2020. 路基煤矸石填料土水特征曲线试验研究[J]. 岩土力学, 41(2): 372-378. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202002003.htm
    时成林, 沙爱民, 闫秋波, 等. 2016. 煤矸石筑路技术研究及应用[M]. 北京: 人民交通出版社.
    高文华, 许黎, 张宗堂, 等. 2023. 干湿循环作用下红砂岩崩解的影响因素研究[J]. 工程地质学报, 31(5): 1597-1604.
    郭万里, 朱俊高, 余挺, 等. 2018. 土的连续级配方程在粗粒料中的应用[J]. 岩土力学, 39(10): 3661-3667. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201810023.htm
    贺建清, 靳明, 阳军生. 2008. 掺土煤矸石的路用工程力学特性及其填筑技术研究[J]. 土木工程学报, 41(5): 87-93. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200805020.htm
    冷伍明, 梅慧浩, 聂如松, 等. 2016. 重载铁路基床粗粒土填料的静力特性研究[J]. 铁道工程学报, 33(11): 23-28. https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC201611005.htm
    李翀, 何昌荣, 王琛, 等. 2008. 粗粒料大型三轴试验的尺寸效应研究[J]. 岩土力学, 29(S1): 563-566. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2008S1113.htm
    李东升, 刘东升. 2015. 煤矸石抗剪强度特性试验对比研究[J]. 岩石力学与工程学报, 34(S1): 2808-2816. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2015S1027.htm
    邱钰, 缪林昌, 刘松玉. 2002. 煤矸石在道路建设中的应用研究现状及实例[J]. 公路交通科技, 19(2): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK200202000.htm
    任非凡, 何江洋, 王冠, 等. 2018. 基于交变移动本构模型的粗粒土动力特性数值解析[J]. 岩土力学, 39(12): 4627-4641. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201812039.htm
    商拥辉, 徐林荣, 黄亚黎, 等. 2020. 重载铁路水泥改良膨胀土路基填料动弹模量及阻尼比研究[J]. 工程地质学报, 28(1): 103-110. doi: 10.13544/j.cnki.jeg.2017-511
    王瑞, 程建军, 祁延录, 等. 2020. 高铁无砟轨道路基填料微膨胀机理试验研究[J]. 工程地质学报, 28(6): 1350-1358. doi: 10.13544/j.cnki.jeg.2019-467
    吴二鲁, 朱俊高, 郭万里, 等. 2020. 基于级配方程的粗粒料压实特性试验研究[J]. 岩土力学, 41(1): 214-220. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202001026.htm
    闫超萍, 龙志林, 周益春, 等. 2020. 钙质砂剪切特性的围压效应和粒径效应研究[J]. 岩土力学, 41(2): 581-591, 634. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202002030.htm
    余湘娟, 房震, 鲍陈阳, 等. 2005. 煤矸石动强度特性试验研究[J]. 岩土力学, 26(S1): 102-104. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2005S1023.htm
    张天军, 尚宏波, 李树刚, 等. 2018. 破碎矸石分级加载蠕变过程中的渗流试验研究[J]. 采矿与安全工程学报, 35(1): 188-196. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201801028.htm
    张宗堂, 高文华, 唐骁宇, 等. 2019a. 干湿循环作用下膨胀岩崩解的粒度熵特征[J]. 水资源与水工程学报, 30(6): 218-224. https://www.cnki.com.cn/Article/CJFDTOTAL-XBSZ201906033.htm
    张宗堂, 高文华, 张志敏, 等. 2019b. 干湿循环作用下膨胀岩的崩解特性及分形特征[J]. 铁道科学与工程学报, 16(4): 930-937. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201904013.htm
    中华人民共和国行业标准编写组. 2002. 碾压式土石坝设计规范(SL274-2001)[S]. 北京: 中国水利水电出版社.
    中华人民共和国行业标准编写组. 2007. 公路土工试验规程(JTG E40-2007)[S]. 北京: 人民交通出版社.
    周楠, 姚依南, 宋卫剑, 等. 2020. 煤矿矸石处理技术现状与展望[J]. 采矿与安全工程学报, 37(1): 136-146. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL202001016.htm
    朱俊高, 郭万里, 王元龙, 等. 2015. 连续级配土的级配方程及其适用性研究[J]. 岩土工程学报, 37(10): 1931-1936. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201510029.htm
    朱晟, 王京, 钟春欣, 等. 2019. 堆石料干密度缩尺效应与制样标准研究[J]. 岩石力学与工程学报, 38(5): 1073-1080. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201905021.htm
    朱晟, 张露澄. 2019. 连续分布超径粗粒土的级配缩尺方法与适用条件[J]. 岩石力学与工程学报, 38(9): 1895-1904. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201909017.htm
  • 加载中
图(11)
计量
  • 文章访问数:  59
  • HTML全文浏览量:  10
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-06
  • 修回日期:  2021-09-30
  • 刊出日期:  2023-10-25

目录

    /

    返回文章
    返回