含水合物土抗拉强度特性

徐玉博 姜大伟 颜荣涛 于鸿飞

徐玉博, 姜大伟, 颜荣涛, 等. 2023. 含水合物土抗拉强度特性[J]. 工程地质学报, 31(5): 1563-1572. doi: 10.13544/j.cnki.jeg.2021-0579
引用本文: 徐玉博, 姜大伟, 颜荣涛, 等. 2023. 含水合物土抗拉强度特性[J]. 工程地质学报, 31(5): 1563-1572. doi: 10.13544/j.cnki.jeg.2021-0579
Xu Yubo, Jiang Dawei, Yan Rongtao, et al. 2023. Tensile strength characteristics of hydrate-bearing soil[J]. Journal of Engineering Geology, 31(5): 1563-1572. doi: 10.13544/j.cnki.jeg.2021-0579
Citation: Xu Yubo, Jiang Dawei, Yan Rongtao, et al. 2023. Tensile strength characteristics of hydrate-bearing soil[J]. Journal of Engineering Geology, 31(5): 1563-1572. doi: 10.13544/j.cnki.jeg.2021-0579

含水合物土抗拉强度特性

doi: 10.13544/j.cnki.jeg.2021-0579
基金项目: 

国家自然科学基金 11962004

国家自然科学基金 12262009

广西自然科学基金项目 2017GXNSFAA198215

详细信息
    作者简介:

    徐玉博(1996-),男,硕士生,主要从事含水合物土力学特性的研究工作. E-mail: xyb1120@163.com

    通讯作者:

    颜荣涛(1984-),男,博士,教授,硕士生导师,主要从事含水合物土力学特性的研究工作. E-mail: yrt301@163.com

  • 中图分类号: P642.3

TENSILE STRENGTH CHARACTERISTICS OF HYDRATE-BEARING SOIL

Funds: 

the National Natural Science Foundation of China 11962004

the National Natural Science Foundation of China 12262009

Guangxi Natural Science Foundation Project 2017GXNSFAA198215

  • 摘要: 含水合物土的抗拉强度特性对含水合物地层的稳定评估具有重要意义。以黏质粉土为赋存介质,利用四氢呋喃(THF)合成含水合物土试样,在冷冻库中利用改进后的单轴拉伸装置研究了含水合物土单轴抗拉强度特性。试验结果表明水合物饱和度、试样干密度、细粒含量对含水合物土的抗拉强度存在明显影响。随着水合物饱和度的增加,抗拉强度呈现指数函数的增长趋势。干密度和细粒含量对抗拉强度的影响在不同的水合物饱和度情况下影响不同,在低水合物饱和度情况下,干密度和细粒含量的增加会使抗拉强度增强;而在较高的水合物饱和度情况下,抗拉强度则随着干密度和细粒含量增加而降低。此外,通过分析含水合物土的波速特性,建立抗拉强度与波速之间的经验关系式。这一关系式对采用声波来估算含水合物土试样的抗拉特性具有重要的参考意义。
  • 图  1  抗拉强度试验装置设计平面图及侧视图

    a. 平面图,b. 侧面图;1. 拉伸固定端,2. 拉伸移动端,3. 固定螺栓,4. 测力传感器,5. 包裹式轴承,6. 底板,7. 步进电机

    Figure  1.  The design planar and lateral plots for the tensile strength test apparatus

    图  2  抗拉强度试验装置实物图

    Figure  2.  The real plot of tensile strength test apparatus

    图  3  抗拉试样

    Figure  3.  Sample for tension test

    图  4  测力传感器的校核(测力传感器以kg为单位进行校正)

    Figure  4.  The check result for the force sensor

    图  5  声波测试试样

    Figure  5.  Sample for acoustic wave test

    图  6  拉伸应力-拉应变曲线(σd=1.6g · cm-3)

    Figure  6.  The tension stress versus the tensile strain for hydrate-bearing soil(1.6g · cm-3)

    图  7  水合物饱和度与抗拉强度的关系(ρd=1.6g · cm-3)

    Figure  7.  Relationship between hydrate saturation and tensile strength(ρd=1.6g · cm-3)

    图  8  土体结构微观示意图

    a. 孔隙填充;b. 持力体

    Figure  8.  Microcosmic diagram of soil structure

    图  9  不同水合物饱和度下干密度与抗拉强度的关系

    Figure  9.  Relationship between dry density and tensile strength at different hydrate saturations(FC=87%)

    图  10  不同水合物饱和度下细粒含量与抗拉强度的关系(ρd=1.6g · cm-3)

    Figure  10.  Relationship between fine grain content and tensile strength at different hydrate saturations(ρd=1.6g · cm-3)

    图  11  水合物饱和度与纵波波速的关系(ρd=1.6g · cm-3)

    Figure  11.  Relationship between hydrate saturation and longitudinal wave velocity(ρd=1.6g · cm-3

    图  12  模型预测与试验结果对比(ρd=1.6g · cm-3)

    Figure  12.  Comparison between model simulation and testing result(ρd=1.6g · cm-3)

    表  1  土的成分表

    Table  1.   Composition of soil

    土样名称及类别 各粒径质量占比/% 粒径级配不均匀系数Cu 颗分曲线的曲率系数Cc 塑性指数
    1.0~0.5 mm 0.5~0.25 mm 0.25~0.075 mm ≤0.075 mm
    FC=87%(黏质粉土) 0.50 2.50 10.00 87.00 19 1.89 9.49
    FC=49.85%(粉砂) 3.50 7.50 39.15 49.85 30 1.95
    FC=12.70%(细砂) 1.70 13.30 72.30 12.70 2.98 1.36
    表 1中FC是Fine Content的缩写,代指细粒含量
    下载: 导出CSV

    表  2  不同干密度不同水合物饱和度试样中水合物的体积(FC=87%)

    Table  2.   Hydrate volumes in samples with different dry densities and hydrate saturation(FC=87%)

    干密度/g·cm-3 Sh=0.35 Sh=0.5 Sh=0.65
    1.5 71.85 102.640 133.43
    1.6 65.60 93.720 121.84
    1.7 59.35 84.793 110.23
    下载: 导出CSV
  • Cai G Q, Che R J, Kong X A, et al. 2017. Experimental investigation on tensile strength of unsaturated fine sands[J]. Journal of Hydraulic Engineering, 48 (5): 623-630.
    Dai Z H, Liu Z W, Liu C Y, et al. 2008. Numerical analysis of soil slope stability considering tensile and shear failures[J]. Chinese Journal of Rock Mechanics and Engineering, 27 (2): 375-382. doi: 10.3321/j.issn:1000-6915.2008.02.021
    Dong L, Li Y L, Liu C L, et al. 2019. Mechanical properties of methane hydrate-bearing interlayered sediments[J]. Journal of Ocean University of China, 18 (6): 1344-1350. doi: 10.1007/s11802-019-3929-z
    Dugarov G A, Duchkov A A, Duchkov A D, et al. 2019. Laboratory validation of effective acoustic velocity models for samples bearing hydrates of different type[J]. Journal of Natural Gas Science and Engineering, 63 : 38-46. doi: 10.1016/j.jngse.2019.01.007
    Guerin G, Goldberg D. 2002. Sonic waveform attenuation in gas hydrate-bearing sediments from the Mallik 2L-38 research well, Mackenzie Delta, Canada[J]. Journal of Geophysical Research Atmospheres, 107 (B5): 1-11.
    Han Z H, Zhang L Q, Zhou J, et al. 2021. Effect of clay mineral grain characteristics on mechanical behaviours of hydrate-bearing sediments. [J]. Journal of Engineering Geology, 29 (6): 1733-1743.
    Heeschen K U, Janoscha J, Spangenberg E, et al. 2020. The impact of ice on the tensile strength of unconsolidated sand-A model for gas hydrate-bearing sands? [J]. Marine and Petroleum Geology, 122(2): 104607.
    Hyodo M, Li Y H, Yoneda J, et al. 2013. Mechanical behavior of gas-saturated methane hydrate-bearing sediments[J]. Journal of Geophysical Research: Solid Earth, 118 (10): 5185-5194. doi: 10.1002/2013JB010233
    Hyodo M, Wu Y, Nakashima K, et al. 2017. Influence of fines content on the mechanical behavior of methane hydrate-bearing sediments[J]. Journal of Geophysical Research Solid Earth, 122 (10): 7511-7524. doi: 10.1002/2017JB014154
    Kleinberg R L, Murray D R, Sinha B K. 2006. Saturation, acoustic properties, growth habit, and state of stress of a gas hydrate reservoir from well logs[J]. Petrophysics: The SPWLA Journal of Formation Evaluation and Reservoir Description, 47 (2): 129-136.
    Kleinberg R, Flaum C, Collett T. 2005. Magnetic resonance log of JAPEX/JNOC/GSC et al. Mallik 5L-38 gas hydrate production research well: Gas hydrate saturation, growth habit, relative permeability[J]. Bulletin of the Geological Survey of Canada: 585.
    Lee J Y, Yun T S, Santamarina J C. 2007. Observations related to tetrahydrofuran and methane hydrates for laboratory studies of hydrate-bearing sediments[J]. Geochemistry Geophysics Geosystems, 8 (6): 1-10.
    Li S D, Sun Y M, Chen W C, et al. 2019. Analyses of gas prouction methods and offshore production tests of natural gas hydrates[J]. Journal of Engineering Geology, 27 (1): 55-68.
    Li X S. 2008 Progress in researches on exploration and exploitation for natural gas hydrate[J]. Modern Chemical Industry, 28 (6): 1-13. doi: 10.3321/j.issn:0253-4320.2008.06.001
    Lijith K P, Malagar B R C, Singh D N. 2019. A comprehensive review on the geomechanical properties of gas hydrate bearing sediments[J]. Marine and Petroleum Geology, 104 : 270-285. doi: 10.1016/j.marpetgeo.2019.03.024
    Liu C L, Meng Q Q, Hu G w, et al. 2017. Characterization of hydrate-bearing sediments recovered from the shenhu area of the south China sea[J]. Interpretation: 1-39.
    Liu Y, Zhang Y B, He Y, et al. 2018. Limit analysis of permanent displacement for slope considering tensile strength of soil[J]. Journal of Geomechanics, 24(6): 855-862.
    Liu Z L, Sheng D, Ning F, et al. 2018. Strength estimation for hydrate-bearing sediments from direct shear tests of hydrate-bearing sand and silt[J]. Geophysical Research Letters: 45.
    Mahabadi N, Zheng X L, Jang J. 2016. The effect of hydrate saturation on water retention curves in hydrate-bearing sediments[J]. Journal of Geophysical Research Solid Earth, 43 (9): 4279-4287.
    Miyazaki K, Masui A, Sakamoto Y, et al. 2011. Triaxial compressive properties of artificial methane-hydrate-bearing sediment[J]. Journal of Geophysical Research: Solid Earth, 116: B06102.
    Onitsuka K, Hong Z, Hara Y, et al. 1995. Interpretation of oedometer test data for natural clays[J]. Soils and Foundations, 35 (3): 61-70. doi: 10.3208/sandf.35.61
    Priest J A, Rees E V L, Clayton C C R I. 2009. Influence of gas hydrate morphology on the seismic velocities of sands[J]. Journal of Geophysical Research Solid Earth, 14: B11205.
    Ren J Y, Lu X B, Zhang X H. 2013. Preliminary study on electric resistance of hydrate-bearing sediments[J]. Journal of Geotechnical Engineering, 35 (S1): 161-165.
    Shi Y H, Zhang X H, Lu X B, et al. 2015. Experimental study on the static mechanical properties of hydrate-bearing silty-clay in the South China Sea[J]. Chinese Journal of Theoretical and Applied Mechanics, 47 (3): 521-528.
    Sloan E, Koh C A. 2007. Clathrate hydrates of natural gases[M]. 3rd ed. CRC Press.
    Spangenberg E, Seyberth K, Heeschen K U, et al. 2018. A quick look method to assess the dependencies of rock physical sediment properties on the saturation with pore-filling hydrate[J]. Journal of Geophysical Research: Solid Earth, 123 (7): 5588-555598. doi: 10.1029/2018JB015855
    Too J L, Chenga A, Khoo B C, et al. 2018a. Hydraulic fracturing in a penny-shaped crack. Part Ⅰ: Methodology and testing of frozen sand[J]. Journal of natural gas science and engineering, 52 : 609-618. doi: 10.1016/j.jngse.2017.12.022
    Too J L, Chenga A, Khoo B C, et al. 2018b. Hydraulic fracturing in a penny-shaped crack. Part Ⅱ: Testing the frack ability of methane hydrate-bearing sand[J]. Journal of Natural Gas Science and Engineering, 52 : 619-628. doi: 10.1016/j.jngse.2018.01.046
    Wang S Y, Luo D S, Zhang X H, et al. 2018. Experimental study of mechanical properties of hydrate clay[J]. Journal of Experimental Mechanics, 33 (2): 245-252.
    Wang S Y, Wang L, Lu X B, et al. 2007. Effects of gas hydrate dissociation on stability of pipe in the sea bed[J]. Journal of Engineering Geology, (S1): 428-432.
    Wei C F, Yan R T, Tian H H, et al. 2020. Geotechnical problems in exploitation of natural gas hydrate: Status and challenges[J]. Natural Gas Industry, 40 (8): 116-132.
    Xu T, Zhang Z B, Li S D, et al. 2021.3D Numerical evaluation of gas hydrate production performance of the depressurization and backfilling with in-situ supplemental heat method[J]. Journal of Engineering Geology, 29 (6): 1926-1941.
    Yan C, Ren X, Cheng Y, et al. 2020. Geomechanical issues in the exploitation of natural gas hydrate[J]. Gondwana Research, 81 : 403-422. doi: 10.1016/j.gr.2019.11.014
    Yoneda J, Masui A, Konno Y, et al. 2015. Mechanical properties of hydrate-bearing turbidite reservoir in the first gas production test site of the Eastern Nankai Trough[J]. Marine & Petroleum Geology: 471-486. doi: 10.3969/j.issn.1671-6647.2015.04.005
    Yun T S, Francisca F M, Santamarina J C, et al. 2005. Compressional and shear wave velocities in uncemented sediment containing gas hydrate[J]. Geophysical Research Letters, 32: L10609. doi: 10.1029/2005GL022607
    Yun T S, Santamarina J C, Ruppel C. 2007. Mechanical properties of sand, silt, and clay containing tetrahydrofuran hydrate[J]. Journal of Geophysical Research: Solid Earth, 112: B04106.
    Zhang H T, Zhang H Q, Zhu Y H. 2007. Gas hydrate investigation and research in China: Present status and progress[J]. Geology in China, 34 (6): 953-961. doi: 10.3969/j.issn.1000-3657.2007.06.001
    Zhang X H, Lu X B, Wang S Y, et al. 2011. Experimental study of mechanical properties of gas hydrate deposits[J]. Rock and Soil Mechanics, 32 (S1): 303-308.
    Zhang X T, Zhang Q Y, Gao Q, et al. 2014. Development and application of geotechnical direct tension test devices[J]. Journal of Geotechnical Engineering, 36 (7): 1309-1315.
    蔡国庆, 车睿杰, 孔小昂, 等. 2017. 非饱和砂土抗拉强度的试验研究[J]. 水利学报, 48 (5): 623-630. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201705014.htm
    戴自航, 刘志伟, 刘成禹, 等. 2008. 考虑张拉与剪切破坏的土坡稳定数值分析[J]. 岩石力学与工程学报, 27 (2): 375-382. doi: 10.3321/j.issn:1000-6915.2008.02.021
    韩振华, 张路青, 周剑, 等. 2021. 黏土矿物颗粒特征对含水合物的沉积物力学特性影响研究[J]. 工程地质学报, 29 (6): 1733-1743. doi: 10.13544/j.cnki.jeg.2021-0052
    李守定, 孙一鸣, 陈卫昌, 等. 2019. 天然气水合物开采方法及海域试采分析[J]. 工程地质学报, 27 (1): 55-68. doi: 10.13544/j.cnki.jeg.2019-065
    李小森. 2008. 天然气水合物能源的勘探与开发[J]. 现代化工, 28 (6): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-XDHG200806000.htm
    刘炎, 张迎宾, 何毅, 等. 2018. 考虑土体抗拉强度的边坡永久位移极限分析[J]. 地质力学学报, 24 (6): 855-862. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201806021.htm
    任静雅, 鲁晓兵, 张旭辉. 2013. 水合物沉积物电阻特性研究初探[J]. 岩土工程学报, 35 (S1): 161-165. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2013S1026.htm
    石要红, 张旭辉, 鲁晓兵, 等. 2015. 南海水合物黏土沉积物力学特性试验模拟研究[J]. 力学学报, 47 (3): 521-528. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201503016.htm
    王淑云, 罗大双, 张旭辉, 等. 2018. 含水合物黏土的力学性质试验研究[J]. 实验力学, 33 (2): 245-252. https://www.cnki.com.cn/Article/CJFDTOTAL-SYLX201802010.htm
    王淑云, 王丽, 鲁晓兵, 等. 2007. 天然气水合物分解对海床中管道稳定性的影响[J]. 工程地质学报, (S1): 428-432. http://www.gcdz.org/article/id/10966
    韦昌富, 颜荣涛, 田慧会, 等. 2020. 天然气水合物开采的土力学问题: 现状与挑战[J]. 天然气工业, 40 (8): 116-132. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202008014.htm
    徐涛, 张召彬, 李守定, 等. 2021. 天然气水合物原位补热降压充填开采方法三维数值模拟研究[J]. 工程地质学报, 29 (6): 1926-1941. doi: 10.13544/j.cnki.jeg.2021-0177
    张洪涛, 张海启, 祝有海. 2007. 中国天然气水合物调查研究现状及其进展[J]. 中国地质, 34 (6): 953-961. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200706000.htm
    张绪涛, 张强勇, 高强, 等. 2014. 土工直接拉伸试验装置的研制及应用[J]. 岩土工程学报, 36 (7): 1309-1315. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201407018.htm
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  67
  • HTML全文浏览量:  13
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-15
  • 修回日期:  2021-11-24
  • 刊出日期:  2023-10-25

目录

    /

    返回文章
    返回