LANDSLIDE DISPLACEMENT PREDICTION MODEL BASED ON TIME SERIES AND MIXED KERNEL FUNCTION SA-SVR
-
摘要: 本文针对阶跃型滑坡变形定量预测困难,提出一种基于时间序列分解与混合核函数SA-SVR的滑坡位移预测模型。首先基于时间序列分解原理,反复使用指数平滑法将滑坡累积位移分解为趋势项位移和周期项位移,使分解后的趋势项位移较平滑且能保证周期项位移的预测精度。同时针对多项式预测容易过拟合造成预测值偏离真实值的问题,采用K-flod交叉验证的3次多项式对趋势项位移进行预测;通过SVR核函数性质,构造泛化能力和学习能力都较强的混合核函数作为SVR模型的核方法,以滑坡诱发因子作为SVR模型输入向量,以模拟退火算法(SA)对使用混合核函数的SVR模型进行参数寻优,从而建立混合核函数的SA-SVR模型预测周期项位移;最后合并趋势项位移和周期项位移得到总位移预测值。以三峡库区白家包滑坡为例,选取ZG325监测点2012年1月~2020年9月数据进行研究,并以ZG324监测点作为辅助验证。结果表明,相较于传统SVR预测模型,模拟退火算法(SA)在参数寻优方面表现良好,混合核函数对SVR模型更加敏感,能较大幅度提高预测精度,具有较高的应用和推广价值。Abstract: This paper puts forward a landslide displacement prediction model. The model is based on time series decomposition and hybrid kernel function SA-SVR. It makes progresses on solving problems of being difficult to quantitatively predict step-type landslide deformation. Firstly,based on the principle of time series decomposition,exponential smoothing is used repeatedly to decompose the cumulative displacement of the landslide into trend displacement and periodic displacement to make the decomposed trend displacement smoother and keep the accuracy of periodic displacement forecast. At the same time,the third-order polynomial of K-flod cross-validation is used to predict the trend displacement avoiding the problems in polynomial prediction. The prediction is easy to overfit and the predicted value deviates from the true value. Based on the properties of SVR kernel function,the mixed kernel function with strong generalization ability and learning ability was constructed as the kernel method of SVR model. The landslide inducing factor is taken as the input vector of SVR model. The simulated annealing(SA)is used to optimize the parameters of SVR model using the mixed kernel function. Thus the SA-SVR model with mixed kernel function is established to predict the periodic displacement. Finally,the trend displacement and periodic displacement are combined to get the predicted total displacement. The paper takes the Baijiabao landslide in the Three Gorges reservoir area as an example,selects the data of ZG325 monitoring point from January 2012 to September 2020,and uses the ZG324 monitoring point as auxiliary verification. The results show that compared with the conventional SVR prediction model,the simulated annealing(SA)performs well in parameter optimization,and the hybrid kernel function is more sensitive to the SVR model,which can greatly improve the prediction accuracy and has high application and promotion value.
-
Key words:
- Baijiabao Landslide /
- Displacement prediction /
- Time series /
- Mixed kernel function /
- SA-SVR model
-
表 1 趋势项位移多项式预测参数
Table 1. Polynomial prediction parameters of trend term displacement
时间段 a b c d R2 第1阶段 -0.0004 -0.1680 17.5704 452.0679 0.9944 第2阶段① 0.0026 -0.6899 66.8027 -934.8835 0.9973 第2阶段② 0.0023 -0.6265 62.4857 -840.4339 0.9972 表 2 累积位移预测精度
Table 2. Accumulated displacement prediction accuracy
时间 实际累积位移 预测累积位移 绝对误差 相对误差 2019-10 1418.830 1417.062 1.768 0.125 2019-11 1418.873 1407.443 11.430 0.806 2019-12 1416.483 1409.117 7.366 0.520 2020-01 1419.963 1412.325 7.638 0.538 2020-02 1419.102 1415.721 3.381 0.238 2020-03 1418.241 1416.542 1.699 0.120 2020-04 1422.760 1417.249 5.512 0.387 2020-05 1416.102 1430.218 14.116 0.997 2020-06 1447.811 1446.016 1.796 0.124 2020-07 1458.174 1474.004 15.830 1.086 2020-08 1461.464 1472.290 10.826 0.741 2020-09 1463.388 1468.249 4.861 0.332 统计 RMSE 8.588 R2 0.790 -
Cortes C,Vapnik V. 1995. Support-Vector networks[J]. Machine Learning,20 (3): 273-297. Deng D M, Liang Y, Wang L Q, et al. 2017. Displacement prediction method based on ensemble empirical mode decomposition and support vector machine regression: A case of landslides in Three Gorges Reservoir area[J]. Rock and Soil Mechanics, 38 (12): 3660-3669. Deng M L, Zhou J, Yi Q L, et al. 2020. Characteristics and mechanism of deformation of chair-shaped soil landslides in Three Gorges Peservoir area[J]. Chinese Journal of Geotechnical Engineering, 42 (7): 1296-1303. Han H M, Zhang L, Shi B, et al. 2019. Prediction of deep displacement of Majiagou landslide based on optical fiber monitoring and PSO-SVM model[J]. Journal of Engineering Geology, 27 (4): 853-861. Huang G H, Yin F, Feng J L. 2020. A nimproved KNN algorithm based on cross validation and distance weighting[J]. Journal of Southwest Minzu University(Natural Science Edition), 46 (2): 172-177. Huang H F, Yi W, Yi Q L, et al. 2014. Smoothness priors approach in displacement decomposition and prediction of landslides[J]. Hydrogeology and Engineering Geology, 41 (5): 95-100. Huang X F, Shao D G, Yang S M. 2007. A decomposition prediction model for rainfall time series and its application[J]. China Rural Water and Hydropower, (9): 6-8. Kang L S, Xie Y, You S Y. 1994. Non-numerical parallel algorithm: simulated annealing algorithm[M]. Beijing: Science Press. Li L W, Wu Y P, Miao F S, et al. 2018. Displacement prediction of landslides based on variational mode decomposition and GWO-MIC-SVR model[J]. Chinese Journal of Rock Mechanics and Engineering, 37 (6): 1395-1406. Li Y X, Xiang Z L, Xia J N. 2019. Dynamic system models and convergence analysis of simulated annealing algorithm[J]. Chinese Journal of Computers, 42 (6): 1161-1173. Liu Q, Yi W. 2019. Prediction of landslide displacement based on induced factors response and BP neural network[J]. Journal of China Three Gorges University(Natural Science), 41 (3): 41-45. Liu Y. 2012. Study on kernel function of support vector machine[D]. Xi'an: Xidian University. Lu P, Wang S M, Guo Z, et al. 2017. Influence of water level daily decrease of Three Gorges Reservoir on Baijiabao landslide stability[J]. Yangtze River, 48 (9): 50-53. Ma R. 2019. The research of quantitative analysis of the correlation on deformation of Baijiabao landslide between rainfall and water level[D]. Yichang: Three Gorges University. Murray J B, Voight B, Glot J P. 1994. Slope movement crisis on the east flank of Mt. Etna volcano: Models for eruption triggering and forecasting[J]. Engineering Geology, 38(3-4): 245-259. doi: 10.1016/0013-7952(94)90041-8 Saito M. 1969. Forecasting time of slope failure by tertiarycreep[C]//Proceedings of the 7th International Conference on SoilMechanics and Foundation Engineering Mexico city, (2): 677-683. Scheidegger A E. 1973. On the Prediction of the Reach and Velocity of Catastrophic Landslides[J]. Rock Mechanics and Rock Engineering, 5 (4): 231-236. Shang M, Liao F, Ma R, et al. 2019. Prediction of cumulative displacement of Bazimen landslide based on one-variable linear regression model[J]. Journal of Engineering Geology, 27 (5): 1172-1178. Shang M, Liao F, Ma R, et al. 2021. Quantitative correlation analysis on deformation of Baijiabao landslide between rainfall and reservoir water level[J]. Journal of Engineering Geology, 29 (3): 742-750. Tang L S, Yin K L, Du J. 2012. Time prediction for landslides with step-style displacement characteristics[J]. Geological Science and Technology Information, 31 (4): 106-110. Wu R X. 2013. Research on landslides mechanism induced by rainfall[D]. Changsha: Central South University. Xu F, Fan C J, Xu X J, et al. 2018. Displacement prediction of landslide based on variational mode decomposition and AMPSO-SVM coupling model[J]. Journal of Shanghai Jiao Tong University, 52 (10): 1388-1395. Yang B B, Yin K L, Du J. 2018. A model for predicting landslide displacement based on time series and long and short term memory neural network[J]. Chinese Journal of Rock Mechanics and Engineering, 37 (10): 2334-2343. Yang F, Xu Q, Fan X M, et al. 2019. Prediction of landslide displacement time series based on Support Vector Regression Machine with Artificial Bee Colony algorithm[J]. Journal of Engineering Geology, 27 (4): 880-889. Yin G Z, Zhang W Z, Zhang D M, et al. 2007. Forecasting of landslide displacement based on exponential smoothing and nonlinear regression analysis[J]. Rock and Soil Mechanics, 28 (8): 1725-1728. Zhang J, Yin K L, Wang J J, et al. 2015. Displacement prediction of Baishuihe landslide based on time series and PSO-SVR model[J]. Chinese Journal of Rock Mechanics and Engineering, 34 (2): 382-391. Zhang K X, Niu R Q, Hu Y J, et al. 2017. Landslide displacement prediction based on wavelet transform and external cause[J]. Journal of China University of Mining & Technology, 46 (4): 924-931. Zhou C, Yin K L, Cao Y, et al. 2015. Displacement prediction of step-like landslide based on the response of inducing factors and support vector machine[J]. Chinese Journal of Rock Mechanics and Engineering, 34 (S2): 4132-4139. 昂温G, 昂温P S. 1988. 外国出版史[M]. 陈生铮, 译. 北京: 中国书籍出版社. 邓冬梅, 梁烨, 王亮清, 等. 2017. 基于集合经验模态分解与支持向量机回归的位移预测方法: 以三峡库区滑坡为例[J]. 岩土力学, 38 (12): 3660-3669. 邓茂林, 周剑, 易庆林, 等. 2020. 三峡库区靠椅状土质滑坡变形特征及机制分析[J]. 岩土工程学报, 42 (7): 1296-1303. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202007018.htm 韩贺鸣, 张磊, 施斌, 等. 2019. 基于光纤监测和PSO-SVM模型的马家沟滑坡深部位移预测研究[J]. 工程地质学报, 27 (4): 853-861. doi: 10.13544/j.cnki.jeg.2018-257 黄光华, 殷锋, 冯九林. 2020. 一种交叉验证和距离加权方法改进的KNN算法研究[J]. 西南民族大学学报(自然科学版), 46 (2): 172-177. https://www.cnki.com.cn/Article/CJFDTOTAL-XNMZ202002009.htm 黄海峰, 易武, 易庆林, 等. 2014. 滑坡位移分解预测中的平滑先验分析方法[J]. 水文地质工程地质, 41 (5): 95-100. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201405018.htm 黄显峰, 邵东国, 阳书敏. 2007. 降雨时间序列分解预测模型及应用[J]. 中国农村水利水电, (9): 6-8. doi: 10.3969/j.issn.1007-2284.2007.09.002 康立山, 谢云, 尤矢勇. 1994. 非数值并行算法: 模拟退火算法[M]. 北京: 科学出版社. 李麟玮, 吴益平, 苗发盛, 等. 2018. 基于变分模态分解与GWO-MIC-SVR模型的滑坡位移预测研究[J]. 岩石力学与工程学报, 37 (6): 1395-1406. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201806008.htm 李元香, 项正龙, 夏界宁. 2019. 模拟退火算法的动力系统模型及收敛性分析[J]. 计算机学报, 42 (6): 1161-1173. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJX201906001.htm 刘琰. 2012. 支持向量机核函数的研究[D]. 西安: 西安电子科技大学. 柳青, 易武. 2019. 基于诱发因素响应与BP神经网络的滑坡位移预测预报[J]. 三峡大学学报(自然科学版), 41 (3): 41-45. https://www.cnki.com.cn/Article/CJFDTOTAL-WHYC201903009.htm 鲁芃, 王世梅, 郭振, 等. 2017. 库水位日降幅对白家包滑坡稳定性影响分析[J]. 人民长江, 48 (9): 50-53. https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE201709011.htm 马锐. 2019. 白家包滑坡变形与降雨、库水位相关性定量化分析研究[D]. 宜昌: 三峡大学. 尚敏, 廖芬, 马锐, 等. 2019. 基于一元线性回归模型八字门滑坡累积位移预测[J]. 工程地质学报, 27 (5): 1172-1178. doi: 10.13544/j.cnki.jeg.2019021 尚敏, 廖芬, 马锐, 等. 2021. 白家包滑坡变形与库水位、降雨相关性定量化分析研究[J]. 工程地质学报, 29 (3): 742-750. doi: 10.13544/j.cnki.jeg.2020-045 汤罗圣, 殷坤龙, 杜鹃. 2012. 阶跃型位移特征滑坡时间预测预报研究[J]. 地质科技情报, 31 (4): 106-110. 吴仁铣. 2013. 降雨诱发的滑坡作用机制研究[D]. 长沙: 中南大学. 徐峰, 范春菊, 徐勋建, 等. 2018. 基于变分模态分解和AMPSO-SVM耦合模型的滑坡位移预测[J]. 上海交通大学学报, 52 (10): 1388-1395. https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT201810031.htm 杨背背, 殷坤龙, 杜娟. 2018. 基于时间序列与长短时记忆网络的滑坡位移动态预测模型[J]. 岩石力学与工程学报, 37 (10): 2334-2343. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201810014.htm 杨帆, 许强, 范宣梅, 等. 2019. 基于时间序列与人工蜂群支持向量机的滑坡位移预测研究[J]. 工程地质学报, 27 (4): 880-889. doi: 10.13544/j.cnki.jeg.2017-256 尹光志, 张卫中, 张东明, 等. 2007. 基于指数平滑法与回归分析相结合的滑坡预测[J]. 岩土力学, 28 (8): 1725-1728. doi: 10.3969/j.issn.1000-7598.2007.08.037 张俊, 殷坤龙, 王佳佳, 等. 2015. 基于时间序列与PSO-SVR耦合模型的白水河滑坡位移预测研究[J]. 岩石力学与工程学报, 34 (2): 382-391. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201502019.htm 张凯翔, 牛瑞卿, 胡友健, 等. 2017. 基于小波变换及外因响应的滑坡位移预测[J]. 中国矿业大学学报, 46 (4): 924-931. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201704028.htm 周超, 殷坤龙, 曹颖, 等. 2015. 基于诱发因素响应与支持向量机的阶跃式滑坡位移预测[J]. 岩石力学与工程学报, 34 (S2): 4132-4139. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2015S2061.htm -