尚敏, 熊德兵, 张惠强, 等. 2022. 基于时间序列与混合核函数SA-SVR的滑坡位移预测模型研究[J]. 工程地质学报, 30(2): 575-588. doi: 10.13544/j.cnki.jeg.2021-0584.
    引用本文: 尚敏, 熊德兵, 张惠强, 等. 2022. 基于时间序列与混合核函数SA-SVR的滑坡位移预测模型研究[J]. 工程地质学报, 30(2): 575-588. doi: 10.13544/j.cnki.jeg.2021-0584.
    Shang Min, Xiong Debing, Zhang Huiqiang, et al. 2022. Landslide displacement prediction model based on time series and mixed kernel function SA-SVR[J]. Journal of Engineering Geology, 30(2): 575-588. doi: 10.13544/j.cnki.jeg.2021-0584.
    Citation: Shang Min, Xiong Debing, Zhang Huiqiang, et al. 2022. Landslide displacement prediction model based on time series and mixed kernel function SA-SVR[J]. Journal of Engineering Geology, 30(2): 575-588. doi: 10.13544/j.cnki.jeg.2021-0584.

    基于时间序列与混合核函数SA-SVR的滑坡位移预测模型研究

    LANDSLIDE DISPLACEMENT PREDICTION MODEL BASED ON TIME SERIES AND MIXED KERNEL FUNCTION SA-SVR

    • 摘要: 本文针对阶跃型滑坡变形定量预测困难,提出一种基于时间序列分解与混合核函数SA-SVR的滑坡位移预测模型。首先基于时间序列分解原理,反复使用指数平滑法将滑坡累积位移分解为趋势项位移和周期项位移,使分解后的趋势项位移较平滑且能保证周期项位移的预测精度。同时针对多项式预测容易过拟合造成预测值偏离真实值的问题,采用K-flod交叉验证的3次多项式对趋势项位移进行预测;通过SVR核函数性质,构造泛化能力和学习能力都较强的混合核函数作为SVR模型的核方法,以滑坡诱发因子作为SVR模型输入向量,以模拟退火算法(SA)对使用混合核函数的SVR模型进行参数寻优,从而建立混合核函数的SA-SVR模型预测周期项位移;最后合并趋势项位移和周期项位移得到总位移预测值。以三峡库区白家包滑坡为例,选取ZG325监测点2012年1月~2020年9月数据进行研究,并以ZG324监测点作为辅助验证。结果表明,相较于传统SVR预测模型,模拟退火算法(SA)在参数寻优方面表现良好,混合核函数对SVR模型更加敏感,能较大幅度提高预测精度,具有较高的应用和推广价值。

       

      Abstract: This paper puts forward a landslide displacement prediction model. The model is based on time series decomposition and hybrid kernel function SA-SVR. It makes progresses on solving problems of being difficult to quantitatively predict step-type landslide deformation. Firstly,based on the principle of time series decomposition,exponential smoothing is used repeatedly to decompose the cumulative displacement of the landslide into trend displacement and periodic displacement to make the decomposed trend displacement smoother and keep the accuracy of periodic displacement forecast. At the same time,the third-order polynomial of K-flod cross-validation is used to predict the trend displacement avoiding the problems in polynomial prediction. The prediction is easy to overfit and the predicted value deviates from the true value. Based on the properties of SVR kernel function,the mixed kernel function with strong generalization ability and learning ability was constructed as the kernel method of SVR model. The landslide inducing factor is taken as the input vector of SVR model. The simulated annealing(SA)is used to optimize the parameters of SVR model using the mixed kernel function. Thus the SA-SVR model with mixed kernel function is established to predict the periodic displacement. Finally,the trend displacement and periodic displacement are combined to get the predicted total displacement. The paper takes the Baijiabao landslide in the Three Gorges reservoir area as an example,selects the data of ZG325 monitoring point from January 2012 to September 2020,and uses the ZG324 monitoring point as auxiliary verification. The results show that compared with the conventional SVR prediction model,the simulated annealing(SA)performs well in parameter optimization,and the hybrid kernel function is more sensitive to the SVR model,which can greatly improve the prediction accuracy and has high application and promotion value.

       

    /

    返回文章
    返回