STUDY ON DYNAMIC RESPONSE MECHANISM OF ROCKFALL IMPACT-ING BURIED OIL AND GAS PIPELINE
-
摘要: 高位崩塌落石是造成长输埋地油气管道破坏的主要地质灾害之一。本文通过111处山区管道崩塌案例分析,归纳出崩塌与埋地管道相互作用的3种模式:冲砸管道、牵引管道及埋没管道,其中冲砸管道的危害性最大,并建立了崩塌与管道相互作用的地质力学模型。采用有限元仿真软件系统模拟了落石冲击、土体与管道变形响应过程及影响因素,发现落石冲击管道的作用过程是一个瞬态过程、持续时间约0.1 s,揭示了土体和管道动态响应规律及管土相互作用机理,发现管土变形经历了从协调变形到非协调变形的发展演化过程。在此基础上通过不同的落石速度、管道埋深、内压、落石形状以及防护工程等影响因素分析,提出了崩塌区管道防护设计建议,管道埋深设计2.0 m以上、盖板厚度不小于0.2 m,可有效降低管道遭受落石冲击破坏的风险。Abstract: High level rockfall is one of the main geological disasters causing the damage of long-distance buried oil and gas pipelines. Based on the analysis of 111 mountain pipeline collapse cases,this paper summarizes three modes of interaction between collapse and buried pipeline,Smashing pipeline,traction pipeline and buried pipeline. Among them,smashing the pipeline is the most harmful. And the geomechanical model of the interaction between collapse and pipeline is established. The response process and influencing factors of rockfall impact,soil and pipeline deformation are simulated by the finite element simulation software. It is found that the rockfall impact process is a transient process with a duration of about 0.1 s,which reveals the dynamic response law of soil and pipeline and the pipe-soil interaction mechanism. The pipe-soil deformation can experience the development and evolution process from coordinated deformation to uncoordinated deformation. On this basis,through the analysis of influencing factors such as different rockfall velocity,pipeline buried depth,internal pressure,rockfall shape and protection engineering,some suggestions on pipeline protection design in collapse area are put forward. The buried depth of the pipeline is designed to be more than 2.0 m and the thickness of the cover plate is not less than 0.2 m,which can effectively reduce the risk of rockfall impact damage to the pipeline.
-
Key words:
- Buried pipeline /
- Rockfall impact /
- Numerical simulation /
- Action mode /
- Dynamic response mechanism
-
表 1 崩塌落石冲击管道作用模式
Table 1. Action mode of rockfall impact on pipeline
作用模式 模型概图 管道敷设方式 管道受力特征 危害程度 灾点个数 埋没管道 ①管道敷设堆积体前缘 纵向偏压为主 较小 86 冲砸管道 ②管道敷设在陡崖下 冲击和纵向挤压为主 最大 23 牵引管道 ③管道敷设陡崖边缘 横向剪切为主 中等 2 表 2 土体物理力学参数
Table 2. Physical and mechanical parameters of soil
岩土参数 弹性模量E /MPa 泊松比 密度/kg·m-3 内摩擦角/(°) 黏聚力/kPa 基岩区域 32.5 0.3 2040.0 25 20.0 回填土区域 20.0 0.3 1867.3 15 29.3 表 3 不同影响因素的参数设计值
Table 3. Parameter design values of different influencing factors
部件 影响因素 取值范围 落石 落石速度/m·s-1 (11、12、13……30) 落石形状 (球体、块面、块棱、块尖) 回填土 水泥盖板厚度/m (0、0.05、0.1、0.15、0.2) 管道 管道内压/MPa (0、2、4、6、8、10、12、14) 管道埋深/m (0.5、1.0、1.5、2.0、2.5) -
Adeeb S M,Horsley D J. 2006. A numerical procedure to establish a safe working pressure during excavation of a pipeline in a rock ditch[J]. International Journal of Pressure Vessels and Piping,83 (7): 488-497. doi: 10.1016/j.ijpvp.2006.03.007 Brooker D C. 2003. Numerical modelling of pipeline puncture under excavator loading. Part I. Development and validation of a finite element material failure model for puncture simulation[J]. International Journal of Pressure Vessels and Piping, 80 (10): 715-725. doi: 10.1016/j.ijpvp.2003.08.003 Deng C J, He G J, Zhen Y R. 2006. Studies on Drucker-Prager yield criterions based on M-C yield criterion and application in geotechnical engineering[J]. Chinese Journal of Geotechnical Engineering, 28 (6): 735-739. Department of Petroleum and Natural Gas, National Energy Administration. et al. 2021. China Natural Gas Development Report(2021)[R]. Beijing: Petroleum Industry Press. Ding F F, Shi Y C, Feng W K. 2009. Numerical simulation of buried pipeline under rock-fall impact[J]. Shanxi Architecture, 35 (30): 87-88. Hu X W, Mei X F, Yang Y, et al. 2019. Dynamic response of pile-plate rock retaining wall under impact of rockfall[J]. Journal of Engineering Geology, 27 (1): 123-133. Huang W, Xie R, Chen X H. 2019. Mechanical analysis of buried oil and gas pipeline under rock fall impact[J]. China Petroleum Machinery, 47 (9): 138-144. Huang Y. 2012. Research on freeze-thaw mechanical behavior of rock mass and collapse formation mechanism along the highway located in alpine and strong earthquake regions—Taking side slope of Tianshan highway as an example[D]. Chengdu: Chengdu University of Technology. Li Y L, Xu W B, Chen H Y, et al. 2012. Reliability analysis of buried high pressure gas pipeline under the impact of rock fall[J]. Journal of Safety Science and Technology, 8 (4): 29-33. Ma W J, Li H S. 2018. Experimental study on rockfall impact response of buried gas pipeline[J]. China Measurement & Test, 44 (9): 23-28. Ma X L. 2017. Research on limit state design method of natural gas pipeline under impact external load[D]. Chengdu: Southwest Petroleum University. Plassiard J P, Donze F V. 2010. Optimizing the design of rockfall embankments with a discrete element method[J]. Engineering Structures, 32 (11): 3817-3826. doi: 10.1016/j.engstruct.2010.08.025 Shangguan F Y, Huang K, Wu S J, et al. 2017. Stress analysis of Lantsang crossing gas pipeline under rock falling situation[J]. Chinese Journal of Applied Mechanics, 34 (3): 483-489. Song A L, Liang G C, Wang W Y. 2006. Current status and development trend of world oil and gas pipelines[J]. Oil & Gas Storage and Transportation, 25 (10): 1-8. Wang D Y, Zhao Y, Wang C H. 2013. Analysis of rockfall impact on buried oil pipeline at Yangba[J]. Journal of Natural Disasters, 22 (3): 229-235. Wang L, Deng Q L, Yang H J, et al. 2007. Evaluation on the safety of natural gas pipeline impacted by dangerous rock fall[J]. Hydrogeology & Engineering Geology, 34 (5): 29-32. Wang Q K, Zhang B, Wang H X, et al. 2020. Optimization and stability analysis of layout parameters of lined high-pressure gas storage caverns[J]. Journal of Engineering Geology, 28 (5): 1123-1131. Wang Y, Yao A L, Li Y L, et al. 2010. Impact of falling rocks on gas pipelines with different buried depths[J]. Petroleum Engineering Construction, 36 (1): 4-7. Wu S J. 2016. The impact of rockfall on the Lantsang crossing pipeline and its prevention[D]. Chengdu: Southwest Petroleum University. Yao A L, Xing Y F, Zeng X G, et al. 2009. Simulated analysis of the dynamic response of buried steel pipeline to the rolling stone impact[J]. Journal of Safety and Environment, 9 (3): 122-125. Zhang H T. 2015. Risk control of the geological hazard for Zhongxian-Wuhan gas pipeline[D]. Qingdao: China University of Petroleum. Zhang S Z. 2012. Accident risk analysis and route selection method of long-distance oil and gas transportation pipeline[D]. Beijing: China University of Mining & Technology, Beijing. 邓楚键, 何国杰, 郑颖人. 2006. 基于M-C准则的D-P系列准则在岩土工程中的应用研究[J]. 岩土工程学报, 28 (6): 735-739. doi: 10.3321/j.issn:1000-4548.2006.06.011 丁凤凤, 石豫川, 冯文凯. 2009. 埋地管道在落石冲击作用下的数值模拟[J]. 山西建筑, 35 (30): 87-88. doi: 10.3969/j.issn.1009-6825.2009.30.055 国家能源局石油天然气司, 等. 2021. 中国天然气发展报告(2021)[R]. 北京: 石油工业出版社, 2021. 胡卸文, 梅雪峰, 杨瀛, 等. 2019. 落石冲击荷载作用下的桩板拦石墙结构动力响应[J]. 工程地质学报, 27 (1): 123-133. doi: 10.13544/j.cnki.jeg.2019-004 黄文, 谢锐, 陈小华. 2019. 落石冲击载荷下埋地油气管道力学分析[J]. 石油机械, 47 (9): 138-144. https://www.cnki.com.cn/Article/CJFDTOTAL-SYJI201909022.htm 黄勇. 2012. 高寒山区岩体冻融力学行为及崩塌机制研究——以天山公路边坡为例[D]. 成都: 成都理工大学. 李又绿, 徐文彬, 陈华燕, 等. 2012. 滚石冲击作用下埋地高压输气管道的可靠性分析[J]. 中国安全生产科学技术, 8 (4): 29-33. https://www.cnki.com.cn/Article/CJFDTOTAL-LDBK201204006.htm 马文江, 李海胜. 2018. 埋地输气管道落石冲击响应的试验研究[J]. 中国测试, 44 (9): 23-28. https://www.cnki.com.cn/Article/CJFDTOTAL-SYCS201809005.htm 马晓磊. 2017. 天然气管道冲击外载荷作用下的极限状态设计方法研究[D]. 成都: 西南石油大学. 上官方媛, 黄坤, 吴世娟, 等. 2017. 澜沧江跨越管段天然气管道落石条件下应力分析[J]. 应用力学学报, 34 (3): 483-489. https://www.cnki.com.cn/Article/CJFDTOTAL-YYLX201703014.htm 宋艾玲, 梁光川, 王文耀. 2006. 世界油气管道现状与发展趋势[J]. 油气储运, 25 (10): 1-8. doi: 10.3969/j.issn.1000-8241-D.2006.10.001 王东源, 赵宇, 王成华. 2013. 阳坝落石对输油管道的冲击分析[J]. 自然灾害学报, 22 (3): 229-235. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH201303031.htm 王磊, 邓清禄, 杨辉建, 等. 2007. 危岩体坠落冲击对输气管道影响的分析评价[J]. 水文地质工程地质, 34 (5): 29-32. doi: 10.3969/j.issn.1000-3665.2007.05.008 王其宽, 张彬, 王汉勋, 等. 2020. 内衬式高压储气库群布局参数优化及稳定性分析[J]. 工程地质学报, 28 (5): 1123-1131. doi: 10.13544/j.cnki.jeg.2020-305 王岩, 姚安林, 李又绿, 等. 2010. 崩塌落石对不同埋深输气管道的冲击影响[J]. 石油工程建设, 36 (1): 4-7. doi: 10.3969/j.issn.1001-2206.2010.01.003 吴世娟. 2016. 崩塌落石对澜沧江跨越管道的影响及其防治研究[D]. 成都: 西南石油大学. 姚安林, 邢义锋, 曾祥国, 等. 2009. 滚石作用下埋地钢管道动力响应数值模拟分析[J]. 安全与环境学报, 9 (3): 122-125. doi: 10.3969/j.issn.1009-6094.2009.03.030 张洪涛. 2015. 忠武输气管道地质灾害风险控制研究[D]. 青岛: 中国石油大学(华东). 张圣柱. 2012. 油气长输管道事故风险分析与选线方法研究[D]. 北京: 中国矿业大学(北京). -