基于静力触探测试的深厚自重黄土场地湿陷性快速评价方法研究

张天林 刘德仁 李青 程富强 李保金 徐硕昌 张严

张天林, 刘德仁, 李青, 等. 2023. 基于静力触探测试的深厚自重黄土场地湿陷性快速评价方法研究[J]. 工程地质学报, 31 (5): 1767-1773. doi: 10.13544/j.cnki.jeg.2021-0624
引用本文: 张天林, 刘德仁, 李青, 等. 2023. 基于静力触探测试的深厚自重黄土场地湿陷性快速评价方法研究[J]. 工程地质学报, 31 (5): 1767-1773. doi: 10.13544/j.cnki.jeg.2021-0624
Zhang Tianlin, Liu Deren, Li Qing, et al. 2023. Study on rapid evaluation of self-weight collapsibility of deep loess based on static probe test[J]. Journal of Engineering Geology, 31(5): 1767-1773. doi: 10.13544/j.cnki.jeg.2021-0624
Citation: Zhang Tianlin, Liu Deren, Li Qing, et al. 2023. Study on rapid evaluation of self-weight collapsibility of deep loess based on static probe test[J]. Journal of Engineering Geology, 31(5): 1767-1773. doi: 10.13544/j.cnki.jeg.2021-0624

基于静力触探测试的深厚自重黄土场地湿陷性快速评价方法研究

doi: 10.13544/j.cnki.jeg.2021-0624
基金项目: 

国家自然科学基金 41662017

兰州市科技计划项目 2018-4-33

详细信息
    作者简介:

    张天林(1984-),男,学士,工程师,主要从事铁道工程方面的施工及管理工作.E-mail:286722451@qq.com

    通讯作者:

    刘德仁(1978-),男,博士,副教授,硕士生导师,主要从事岩土工程及铁道工程相关的教学与研究工作.E-mail:liuderen@mail.lzjtu.cn

  • 中图分类号: TU444

STUDY ON RAPID EVALUATION OF SELF-WEIGHT COLLAPSIBILITY OF DEEP LOESS BASED ON STATIC PROBE TEST

Funds: 

the National Natural Science Foundation of China 41662017

Lanzhou Science and Technology Project 2018-4-33

  • 摘要: 湿陷性是制约黄土场地工程建设的最主要因素。针对黄土场地现场浸水试验测试时间长、成本高等问题,在兰州新区黄土场地和靖远黄河高阶地黄土场地进行静力触探试验,研究静力触探锥尖阻力、锥侧阻力沿土层深度的变化关系,并在现场取原状黄土试样进行室内湿陷试验,研究发现室内试验所测得的自重湿陷系数沿深度具有良好的线性关系,由此建立了静力触探所测锥尖、锥侧阻力与自重湿陷系数之间的联系,提出了一种通过静力触探试验结果快速评价黄土场地自重湿陷性的方法。基于上述方法,对兰州新区和靖远黄河阶地黄土场地其他点位的测试结果进行自重湿陷性评价,验证了该方法的可行性与准确性。
  • 图  1  静力触探试验示意图

    Figure  1.  Schematic diagram of static penetration test

    图  2  兰州新区黄土场地锥尖阻力沿深度变化图

    Figure  2.  Diagram of cone-tip resistance variation along depth of loess site in Lanzhou New Area

    图  3  兰州新区黄土场地锥侧阻力沿深度变化图

    Figure  3.  Diagram of cone-side resistance variation along depth of loess site in Lanzhou New Area

    图  4  靖远黄河高阶地黄土场地锥尖阻力沿深度变化图

    Figure  4.  Change of cone-tip resistance along depth of Yellow River high terrace loess site in Jingyuan

    图  5  靖远黄河高阶地黄土场地锥侧阻力沿深度变化图

    Figure  5.  Change of conical lateral resistance along depth in loess field of high terrace of Yellow River in Jingyuan

    图  6  兰州新区黄土场地自重湿陷系数沿深度分布曲线

    Figure  6.  The gravity subsidence coefficient distribution curve along depth of loess site in Lanzhou New Area

    图  7  靖远黄河高阶地黄土场地自重湿陷系数沿深度分布曲线

    Figure  7.  Gravity collapsibility coefficient distribution curve along depth of Yellow River high terrace loess site in Jingyuan

    图  8  兰州新区黄土场地自重湿陷系数与静力触探数据关系

    Figure  8.  Relationship between dead weight collapsibility coefficient and static penetration data of loess site in Lanzhou New Area

    图  9  靖远黄河高阶地黄土场地自重湿陷系数与静力触探数据关系

    Figure  9.  Relationship between dead weight collapsibility coefficient and static penetration data of Yellow River high terrace loess in Jingyuan

    图  10  兰州新区黄土场地锥尖阻力沿深度变化图

    Figure  10.  Diagram of cone-tip resistance variation along depth of loess site in Lanzhou New Area

    图  11  兰州新区黄土场地锥侧阻力沿深度变化图

    Figure  11.  Diagram of cone-side resistance variation along depth of loess site in Lanzhou New Area

    图  12  靖远黄河高阶地黄土场地静力触探锥尖阻力沿深度变化图

    Figure  12.  Variation of static penetration cone tip resistance along depth in the loess site of Yellow River high terrace in Jingyuan

    图  13  靖远黄河高阶地黄土场地静力触探锥侧阻力沿深度变化图

    Figure  13.  Variation of static penetration cone lateral resistance along depth of Yellow River high terrace loess site in Jingyuan

    图  14  兰州新区黄土场地自重湿陷系数沿深度分布

    Figure  14.  Distribution of gravity collapsibility coefficient of loess site in Lanzhou New Area along the depth

    图  15  靖远黄河阶地黄土场地自重湿陷系数沿深度分布

    Figure  15.  Distribution of gravity collapsibility coefficient of Yellow River terrace in Jingyuan along depth

    表  1  黄土湿陷系数与湿陷等级的对应关系

    Table  1.   Corresponding relationship between loess collapsibility coefficient and collapsibility grade

    湿陷系数范围 湿陷等级
    δS>0.07 强烈湿陷
    0.03<δS<0.07 中等湿陷
    0.015<δS<0.03 轻微湿陷
    δS<0.015 无湿陷性
    下载: 导出CSV

    表  2  拟合系数取值表

    Table  2.   Table of values of fitting coefficients

    黄土分布 A1 B1 A2 B2
    兰州新区 -0.0201 0.1895 5.6×10-4 0.1740
    靖远黄河阶地 0.0044 0.0390 9.1×10-5 0.0437
    下载: 导出CSV

    表  3  不同湿陷等级与静力触探数据的对应关系

    Table  3.   The corresponding relationship between different collapsibility grades and static penetration data

    湿陷等级 兰州新区黄土 靖远黄河阶地黄土
    qc fs qc fs
    强烈 <5.69 <185.71 >7.05 >289.01
    中等 5.69~7.94 185.71~257.14 <7.05 <289.01
    轻微 7.94~8.68 257.14~283.93
    >8.68 >283.93
    下载: 导出CSV
  • Cheng W, Zhao T Y. 2018. Study on physical and mechanical properties and evaluation of collapsibility loess of different landforms[J]. Safety and Environmental Engineering, 25 (6): 191-198.
    Fu Y. 2016. Correlation of the collapsibility of loess and the physical index[D]. Beijing: China University of Geosciences(Beijing).
    Gao Y, Ma Y X, Zhang W Y, et al. 2019. Analysis of humidifying deformation characteristics and microstructure of loess in Xining Area[J]. Journal of Engineering Geology, 27 (4): 803-810.
    He L X, Wang X, Zhang Y J, et al. 2018. Model test study on steam diffusion law of unsaturated loess[J]. Journal of Engineering Geology, 26 (5): 1265-1271.
    Huang Y, Wang Y S, Wu G H. 2018. Evaluate loess collapsibility based on fuzzy information optimization method[J]. Journal of Gansu Sciences, 34 (4): 94-99.
    Kang X J, Li B. 2008. Development status and future trend of static penetration technology abroad[J]. Geotechnical Engineering World, 11 (5): 63-65. doi: 10.3969/j.issn.1674-7801.2008.05.019
    Liu Y, Wang J D. 2000. The method of fuzzy information processing of optimization in the evaluation of loess collapsibility[J]. Journal of Northwest University(Natural Science Edition), 30 (1): 78-82.
    Liu Y B, Chen H E, Xu X H, et al. 2020. Laboratory study on collapsibility of typical loess under unsaturated humidified conditions[J]. Journal of Engineering Geology, 28 (5): 973-981.
    Ma H P, Chen Z Y, Yu S. 2014. Correlations of soil shear strength with specific penetration resistance of CPT in Shanghai area[J]. Rock and Soil Mechanics, 35 (2): 536-542.
    The National Standard Compilation Group of the People's Republic of China. 2019. Code for building construction in collapsible loess regions(GB50025-2018)[S]. Beijing: China Architecture and Architecture Press.
    Wu X P, Zhao Y H, Xu A H, et al. 2018. Relationship between collapsibility and physical-mechanical indexes of loess and evaluation methods[J]. Journal of Yangtze River Scientific Research Institute, 35 (6): 75-80.
    Xie W L, Wang J D, Zhang X J, et al. 2005. Application in evaluation of loess collapsibility with the method of fuzzy information optimization processing[J]. Journal of Northwest University(Natural Science Edition), 35 (1): 95-99.
    Zhou S H, Wei L Y, Wu F Q, et al. 1999. Study on geotechnical properties of loess with the help of a portable dynamic penetrometer[J]. Chinese Journal of Geotechnical Engineering, 21 (6): 719-722. doi: 10.3321/j.issn:1000-4548.1999.06.019
    陈伟, 赵天宇. 2018. 不同地貌黄土的物理力学特性和湿陷性评价[J]. 安全与环境工程, 25 (6): 191-198. https://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ201806030.htm
    付宇. 2016. 黄土湿陷性与物理指标相关性研究[D]. 北京: 中国地质大学(北京).
    高英, 马艳霞, 张吾渝, 等. 2019. 西宁地区黄土增湿变形特性及微观结构分析[J]. 工程地质学报, 27 (4): 803-810. doi: 10.13544/j.cnki.jeg.yt2019416
    黄宇, 王延寿, 吴光辉. 2018. 基于模糊信息优化方法的黄土湿陷性评价[J]. 甘肃科学学报, 30 (4): 94-99. https://www.cnki.com.cn/Article/CJFDTOTAL-GSKX201804017.htm
    康晓娟, 李波. 2008. 国外静力触探技术发展现状及未来趋势[J]. 岩土工程界, 11 (5): 63-65. https://www.cnki.com.cn/Article/CJFDTOTAL-YSJS200805016.htm
    刘弋博, 陈慧娥, 许晓慧, 等. 2020. 非饱和增湿条件下典型黄土湿陷性研究[J]. 工程地质学报, 28 (5): 973-981. doi: 10.13544/j.cnki.jeg.2020-357
    何陇霞, 王旭, 张延杰, 等. 2018. 非饱和黄土水蒸气扩散规律模型试验研究[J]. 工程地质学报, 26 (5): 1265-1271. doi: 10.13544/j.cnki.jeg.2018111
    刘悦, 王家鼎. 2000. 黄土湿陷性评价中的模糊信息优化处理方法[J]. 西北大学学报(自然科学版), 30 (1): 78-82. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDZ20050100O.htm
    马海鹏, 陈祖煜, 于沭. 2014. 上海地区土体抗剪强度与静力触探比贯入阻力相关关系研究[J]. 岩土力学, 35 (2): 536-542. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201402034.htm
    武小鹏, 赵永虎, 徐安花, 等. 2018. 黄土湿陷性与其物理力学指标的关系及评价方法[J]. 长江科学院院报, 35 (6): 75-80. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201806017.htm
    谢婉丽, 王家鼎, 张新军, 等. 2005. 模糊信息优化方法在黄土湿陷性评价中的应用[J]. 西北大学学报(自然科学版), 35 (1): 95-99. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDZ20050100O.htm
    中华人民共和国国家标准编写组. 2019. 湿陷性黄土地区建筑规范(GB50025—2018)[S]. 北京: 中国建筑工业出版社.
    周树华, 魏兰英, 伍法权, 等. 1999. 运用轻便动力触探仪研究黄土的岩土工程特性[J]. 岩土工程学报, 21 (6): 719-722. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC199906015.htm
  • 加载中
图(15) / 表(3)
计量
  • 文章访问数:  52
  • HTML全文浏览量:  10
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-10
  • 修回日期:  2021-11-03
  • 刊出日期:  2023-10-25

目录

    /

    返回文章
    返回