深海浅表层沉积物不排水剪切强度的多探头原位测试系统及评价方法研究

谷忠德 郭兴森 赵维 王兴 刘晓磊 郑敬宾 刘敬喜 贾永刚 年廷凯

谷忠德, 郭兴森, 赵维, 等. 2021. 深海浅表层沉积物不排水剪切强度的多探头原位测试系统及评价方法研究[J].工程地质学报, 29(6): 1949-1955. doi: 10.13544/j.cnki.jeg.2021-0658
引用本文: 谷忠德, 郭兴森, 赵维, 等. 2021. 深海浅表层沉积物不排水剪切强度的多探头原位测试系统及评价方法研究[J].工程地质学报, 29(6): 1949-1955. doi: 10.13544/j.cnki.jeg.2021-0658
Cu Zhongde, Cuo Ximgsen, Zhao Wei, et al. 2021. Muli-probe in-situ lesting system and evaluation method for undrained shear strength of deep-seashallow sediments[J]. Journal of Engineering Geology, 29(6): 1949-1955. doi: 10.13544/j.cnki.jeg.2021-0658
Citation: Cu Zhongde, Cuo Ximgsen, Zhao Wei, et al. 2021. Muli-probe in-situ lesting system and evaluation method for undrained shear strength of deep-seashallow sediments[J]. Journal of Engineering Geology, 29(6): 1949-1955. doi: 10.13544/j.cnki.jeg.2021-0658

深海浅表层沉积物不排水剪切强度的多探头原位测试系统及评价方法研究

doi: 10.13544/j.cnki.jeg.2021-0658
基金项目: 

国家重点研发计划项目 2018YFC0309200

国家自然科学基金 51879036

辽宁省兴辽英才计划项目 XLYC2002036

详细信息
    作者简介:

    谷忠德(1994-),男,博士生,主要从事海底沉积物土力学性质评价研究. E-mail:gzd_jmz@163.com

    通讯作者:

    年廷凯(1971-),男,博士,教授,博士生导师,主要从事海洋岩土力学与能源岩土工程、工程地质环境与地质灾害领域的教学和科研工作. E-mail:tknian@dlut.edu.cn

  • 中图分类号: P67

MULTI-PROBE IN-SITU TESTING SYSTEM AND EVALUATION METHOD FOR UNDRAINED SHEAR STRENGTH OF DEEP-SEA SHALLOW SEDI ̄MENTS

Funds: 

National Key Research and Development Plan 2018YFC0309200

the National Natural Science Foundation of China 51879036

Liaoning Revitalization Talents Program XLYC2002036

  • 摘要: 海洋工程建设已步入深海,但与之匹配的浅表层沉积物不排水剪切强度原位测试技术尚不成熟。为此,本文开发了可用于评估深海浅表层沉积物土力学性质的多探头原位测试系统,包括锥形触探仪、球形贯入仪和十字板剪切仪,可实现对深海沉积物土力学性质的快速、准确和智能化评价。进一步,通过CEL大变形数值模拟和足尺土工模型试验确定锥形触探仪的锥尖阻力系数,基于离心模型试验给出球形贯入仪的贯入阻力系数,从而完善深海浅表层沉积物不排水剪切强度的评价方法;在此基础上,探讨3种特定仪器各自适合的强度测试区间。结果表明:对于深海浅表层沉积物不排水剪切强度的评估,锥形触探仪和球形贯入仪的阻力系数建议分别取值为9.5和11.1。
  • 图  1  国际知名海床式静力触探设备

    a. GOST(水深2000m);b. NEPTUNE 5000(水深3000m);c. SEACALF(水深3000 m);d. MANTA-100(水深4000m)

    Figure  1.  Internationally renowned seabed CPT

    图  2  3种原位测试仪器实物图

    a. 锥形触探仪;b. 球形贯入仪;c. 十字板剪切仪

    Figure  2.  Physical map of three in-situ test instruments

    图  3  锥形触探仪贯入数值模型

    a. 土体模型;b. 贯入器;c. 组合模型

    Figure  3.  CPT penetration numerical model

    图  4  锥尖阻力系数Nkt对比

    Figure  4.  CPT resistance factor Nkt comparison

    图  5  足尺土工模型试验

    a. 试验系统;b. 锥形触探仪试验

    Figure  5.  Full scale geotechnical model test

    图  6  锥形触探仪与T-bar和微型十字板试验结果对比

    说明:Nkt取值为9.5,NT-bar取值为10.5

    Figure  6.  Comparison of CPT with T-bar and Mini VST

    图  7  高岭土的离心试验贯入阻力曲线

    Figure  7.  Centrifugal penetration resistance curve of Kaolin clay

    表  1  仪器尺寸及贯入或扭转参数

    Table  1.   Instrument size and penetration or torsion parameters

    仪器类型 探头尺寸/mm 杆轴直径/mm 贯入或扭转速率
    锥形触探仪 直径 DCone=35.7 35.7(探杆) 20±5mm·s-1
    球形贯入仪 DBall=113
    十字板
    剪切仪
    高×直径×板厚 100×50×2 13.0(连接杆) 35.7(探杆) 12(°)/min
    下载: 导出CSV

    表  2  CEL方法模拟参数

    Table  2.   Parameters of CEL method

    本构模型 单元类型 模型尺寸/mm 模拟工况/kPa
    莫尔-库仑 EC3D8R
    欧拉体
    R3D3
    拉格朗日体
    长×宽×高
    17.85×17.85×53.55
    细网格尺寸
    0.357
    粗网格尺寸
    3.57
    0.5
    1.0
    2.0
    5.0
    10.0
    下载: 导出CSV

    表  3  T-bar与微型十字板剪切仪(Mini-VST)尺寸

    Table  3.   Size of T-bar and Mini-VST

    直径/mm 长度/mm 板高/mm
    T-bar 6 42
    Mini-VST 10 20
    下载: 导出CSV

    表  4  球形贯入仪阻力系数结果

    Table  4.   Results of NBall

    土样编号 测试深度/D 手动十字板结果/kPa 贯入阻力/kPa 阻力系数
    K1-75g 2.5 2.4 25.9 10.8
    K1-125g 27.0 11.3
    K2-75g 2.5 3.6 39.3 10.9
    K2-125g
    下载: 导出CSV
  • Chen Q, Shi Y H, Pan Y, et al. 2007. Downhole technology for submarine CPT and its equipment development[J]. The Ocean Engineering, 25 (4): 73-76. http://d.wanfangdata.com.cn/Periodical/hygc200704012
    Colreavy C, O′Loughlin C D, Randolph M F. 2016. Experience with a dual pore pressure element piezoball[J]. International Journal of Physical Modelling in Geotechnics, 16(3): 101-118. doi: 10.1680/jphmg.15.00011
    DeJong J T, Yafrate N J, DeGroot D J. 2011. Evaluation of undrained shear strength using full-flow penetrometers[J]. Journal of Geotechnical and Geoenvironmental Engineering, 137(1): 14-26. doi: 10.1061/(ASCE)GT.1943-5606.0000393
    Fan N, Zhao W, Nian T K, et al. 2017. A new full-flow penetrometer for strength of submarine mud flow[J]. Journal of Shanghai Jiaotong University, 51 (4): 456-467. http://www.researchgate.net/publication/318587638_A_New_Full-Flow_Penetrometer_for_Strength_Test_of_Submarine_Mud_Flow
    Guo S Z, Liu R. 2015. Application of cone penetration test in offshore engineering[J]. Chinese Journal of Geotechnical Engineering, 37 (S1): 207-211. http://en.cnki.com.cn/Article_en/CJFDTOTAL-YTGC2015S1040.htm
    Guo S Z, Liu R, Zhang X D. 2017. In-situ testing method for undrained shear strength in shallow soft clays[J]. Chinese Journal of Geotechnical Engineering, 41 (2): 303-310.
    Guo X S. 2021. Study on the susceptibility of submarine seismic landslide and landslide-pipeline interaction[D]. Dalian: Dalian University of Technology.
    Hu Y, Wang Y. 2020. Identification of subsurface soil stratification using cone penetration tests and Bayesian learning[J]. Journal of Engineering Geology, 28 (5): 966-972.
    Ji F D, Jia Y G, Liu X L, et al. 2016. In situ measurement of the engineering mechanical properties of seafloor sediment[J]. Marine Geology and Quaternary Geology, 36 (3): 191-200. http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYDZ201603025.htm
    Jiang Y Y. 2011. The study of cone penetration testing methods and the application in offshore engineering[D]. Tianjin: Tianjin University.
    Kelleher P J, Randolph M F. 2005. Seabed geotechnical characterisation with a ball penetrometer deployed from the portable remotely operated drill[C]//Proceedings of the 1st International Symposium on Frontiers in Offshore Geotechnics: 365-371.
    Li G S, Pan Y J, Meng X H. 2019. Comparative experimental analysis of physical and mechanical properties of saturated soft soil under different sampling methods[J]. Journal of Engineering Geology, 27 (3): 550-558. http://en.cnki.com.cn/Article_en/CJFDTotal-GCDZ201903012.htm
    Liu H Y. 2020. Study on in-situ shear force measurement and penetration system for seabed sediments[D]. Jinan: Shandong University.
    Liu R M, Yuan Q M, Kong L, et al. 2019. A constitutive model for methane hydrate-bearing sediments based on unified hardening parameters[J]. Journal of Engineering Geology, 27 (4): 811-818. http://www.zhangqiaokeyan.com/academic-journal-cn_journal-engineering-geology_thesis/0201272957753.html
    Liu Y, Zhu H Z, Chen G B, et al. 2017. Development and application of the PeneVector Seabed CPT System[C]//Proceedings of the 15th National Conference on Engineering Geophysical Prospecting and Geotechnical Engineering Testing.
    Low H E, Randolph M F, Lunne T, et al. 2011. Effect of soil characteristics on relative values of piezocone, T-bar and ball penetration resistances[J]. Gotechnique, 61 (8): 651-664. doi: 10.1680/geot.9.P.018
    Lu F C, Qu Y D, Liao M H. 2004. The development status and applications of in situ cone penetration test technology[J]. Ocean Technology, 23 (4): 32-36. http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYJS200404008.htm
    Lunne T. 2010. The CPT in offshore soil investigations—A historic perspective[C]//2nd International Symposium on Lone Penetration Testing, 1: 43.
    Nguyen T D, Chung S G. 2015. Effect of shaft area on ball resistances in soft clays[J]. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 168 (2): 103-119. doi: 10.1680/geng.14.00023
    Nian T K, Fan N, Jiao H B, et al. 2018. Full-flow strength tests on the soft clay in the northern slope of the South China Sea[J]. Chinese Journal of Geotechnical Engineering, (4): 602-611. http://en.cnki.com.cn/Article_en/CJFDTOTAL-YTGC201804005.htm
    Peng P. 2018. Research on penetration mechanism and its application on offshore engineering[D]. Nanjing: Southeast University.
    Randolph M F, Hefer P A, Geise J M, et al. 1998. Improved seabed strenght profiling using T-bar penetrometer[C]//Offshore Site Investigation and Foundation Behaviour: New Frontiers-Proceedings of an International Conference.
    Rémai Z. 2013. Correlation of undrained shear strength and CPT resistance[J]. Periodica Polytechnica Civil Engineering, 57 (1): 39-44. doi: 10.3311/PPci.2140
    Sacchetto M, Trevisan A, Elmgren K, et al. 2004. CPTWD(Cone Penetration Test While Drilling) a new method for deep geotechnical surveys[C]//Proceeding of ISC-2 on Geotechnical and Geophysical Site Characterization, 1: 787.
    Standards Association of Australia. 1993. Geotechnical site investigations(AS 1726-1993)[S]. NSW, Australia: Standard Australia(Standards Association of Austalia).
    Tao K, Zhao J M, Xu X C. 2013. Influencing factors and countermeasures of sea cross-plate shear test[J]. China Water Transport, 13 (9): 329-330.
    The Professional Standards Compilation Group of People's Republic of China. 2002. Code for investigation of geotechnical engineering(GB 50021-2001)[S]. Beijing: China Construction Industry Press.
    Walker J, Yu H S. 2006. Adaptive finite element analysis of cone penetration in clay[J]. Acta Geotechnica, 1(1): 43-57. doi: 10.1007/s11440-006-0005-9
    Walker J, Yu H S. 2010. Anslysis of the cone penetration test in layered clay[J]. Geotechnique, 60(12): 939-948. doi: 10.1680/geot.7.00153
    Wang C, Yu Y J, Kou B B. 2017. Summary of marine in-situ testing methods[J]. Ocean Development and Management, 34 (1): 81-86. http://en.cnki.com.cn/Article_en/CJFDTOTAL-HKGL201701016.htm
    Wang D, Bienen B, Nazem M, et al. 2015. Large deformation finite element analyses in gectechnical engineering[J]. Computers and Geotechnics, 65: 104-114. doi: 10.1016/j.compgeo.2014.12.005
    Wei D B, Yang Q, Xia J X. 2021. Factors influencing shear and its variation law[J]. Marine Geology Frontiers, 37 (8): 28-33.
    Wu H, Zhu H H, Zhou G Y, et al. 2020. Experimental study on distributed monitoring of soil shear displacement considering deformation compatibility[J]. Journal of Engineering Geology, 28 (4): 716-724.
    Yang Y, Liu S Y, Cai G J, et al. 2017. Review on penetration mechanism and application of Ball penetrometer in offshore engineering[J]. Journal of Engineering Geology, 25 (6): 1603-1609. http://en.cnki.com.cn/Article_en/CJFDTOTAL-GCDZ201706024.htm
    Yao S L, Zheng X Y. 2015. Introduction of offshore in-situ vane shear test[J]. Coastal Engineering, 34 (2): 67-73. http://en.cnki.com.cn/Article_en/CJFDTOTAL-HAGC201502008.htm
    Zhang H, Jia Y G, Liu X L, et al. 2019. Progress in in-situ measurement of sediment mechanical properties for full ocean depth[J]. Marine Geology Frontiers, 35 (2): 4-12. http://en.cnki.com.cn/Article_en/CJFDTotal-HYDT201902001.htm
    Zhao W, Wang R R, Li Z Y, et al. 2013. Laboratory and centrifuge model tests study on full flow penetrometers[J]. Beifang Jiaotong, (6): 1-5. http://en.cnki.com.cn/Article_en/CJFDTOTAL-LNJT201306002.htm
    陈奇, 石要红, 潘毅, 等. 2007. 基于downhole工艺的海底静力触探及其设备研制[J]. 海洋工程, 25 (4): 73-76. doi: 10.3969/j.issn.1005-9865.2007.04.012
    范宁, 赵维, 年廷凯, 等. 2017. 一种测试海底泥流强度的新型全流动贯入仪[J]. 上海交通大学学报, 51 (4): 456-467. https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT201704012.htm
    郭绍曾, 刘润. 2015. 静力触探测试技术在海洋工程中的应用[J]. 岩土工程学报, 37 (S1): 207-211. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2015S1040.htm
    郭绍曾, 刘润, 张雪东. 2017. 浅表层软黏土不排水强度的原位测试方法[J]. 岩土工程学报, 41 (2): 303-310. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201902009.htm
    郭兴森. 2021. 海底地震滑坡易发性与滑坡-管线相互作用研究[D]. 大连: 大连理工大学.
    胡越, 王宇. 2020. 静力触探识别场地土层分布的贝叶斯学习方法研究[J]. 工程地质学报, 28 (5): 966-972. doi: 10.13544/j.cnki.jeg.2020-263
    季福东, 贾永刚, 刘晓磊, 等. 2016. 海底沉积物工程力学性质原位测量方法[J]. 海洋地质与第四纪地质, 36 (3): 191-200. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201603025.htm
    蒋衍洋. 2011. 海上静力触探测试方法研究及工程应用[D]. 天津: 天津大学.
    李高山, 潘永坚, 孟叙华. 2019. 不同取样方法下饱和软土物理力学性状对比试验分析[J]. 工程地质学报, 27 (3): 550-558. doi: 10.13544/j.cnki.jeg.2018-103
    刘恒宇. 2020. 海底沉积物原位剪切力测量及贯入系统研究[D]. 济南: 山东大学.
    刘锐明, 袁庆盟, 孔亮, 等. 2019. 基于统一硬化参数的深海能源土本构模型[J]. 工程地质学报, 27 (4): 811-818. doi: 10.13544/j.cnki.jeg.2018-249
    刘雨, 祝汉柱, 陈贵标, 等. 2017. PeneVector海床式静力触探系统研发及工程应用[C]//第十五届全国工程物探与岩土工程测试学术大会论文集. 北京: [出版者不详].
    陆凤慈, 曲延大, 廖明辉. 2004. 海上静力触探(CPT)测试技术的发展现状和应用[J]. 海洋技术, 23 (4): 32-36. doi: 10.3969/j.issn.1003-2029.2004.04.008
    年廷凯, 范宁, 焦厚滨, 等. 2018. 南海北部陆坡软黏土全流动强度试验研究[J]. 岩土工程学报, (4): 602-611. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201804005.htm
    彭鹏. 2018. T型全流触探贯入仪作用机理及海洋软土工程应用研究[D]. 南京: 东南大学.
    陶凯, 赵家明, 徐绪程. 2013. 海上十字板剪切试验的影响因素及应对措施[J]. 中国水运(下半月), 13 (9): 329-330. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSUX201309158.htm
    王偲, 于彦江, 寇贝贝. 2017. 海洋原位试验方法综述[J]. 海洋开发与管理, 34 (1): 81-86. doi: 10.3969/j.issn.1005-9857.2017.01.016
    魏定邦, 杨强, 夏建新. 2021. 深海沉积物抗剪强度影响因素及其变化规律[J]. 海洋地质前沿, 37 (8): 28-33. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT202108005.htm
    吴涵, 朱鸿鹄, 周谷宇, 等. 2020. 考虑变形协调的土体剪切位移分布式测试研究[J]. 工程地质学报, 28 (4): 716-724. doi: 10.13544/j.cnki.jeg.2019-203
    杨岩, 刘松玉, 蔡国军, 等. 2017. 球型全流触探仪的机理研究及工程应用综述[J]. 工程地质学报, 25 (6): 1603-1609. doi: 10.13544/j.cnki.jeg.2017.06.024
    姚首龙, 郑喜耀. 2015. 海上原位十字板剪切试验方法介绍[J]. 海岸工程, 34 (2): 67-73. https://www.cnki.com.cn/Article/CJFDTOTAL-HAGC201502008.htm
    张红, 贾永刚, 刘晓磊, 等. 2019. 全海深海底沉积物力学特性原位测试技术[J]. 海洋地质前沿, 35 (2): 4-12. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT201902001.htm
    赵维, 王冉冉, 李志阳, 等. 2013. 全流动贯入仪的室内和离心模型试验研究[J]. 北方交通, (6): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-LNJT201306002.htm
    中华人民共和国国家标准编写组. 2002. 岩土工程勘察规范(GB 50021-2001)[S]. 北京: 中国建筑工业出版社.
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  202
  • HTML全文浏览量:  39
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-30
  • 修回日期:  2021-11-22
  • 刊出日期:  2021-12-25

目录

    /

    返回文章
    返回