THREE-DIMENSIONAL NUMERICAL ANALYSIS OF EXCAVATION EFFECT ON ADJACENT DOUBLE-COMPARTMENT UTILITY TUNNEL
-
摘要: 随着城市地下空间的开发利用,出现越来越多邻近地下综合管廊基坑开挖的工程案例,对管廊结构安全及防水性能产生重要影响。以厦门某邻近既有双舱综合管廊的基坑开挖项目为研究背景,采用PLAXIS 3D建立三维有限元分析模型,基于HS-small小应变土体本构模型,模拟基坑开挖过程对综合管廊的影响。研究结果表明,开挖后,邻近综合管廊沿轴线方向的变形受力模式可分为平移转动区、相对扭转区和位移约束区3个特征区域。基坑中部附近管廊发生朝向基坑的平移和绕轴转动,基坑边界附近管廊发生相对扭转,远离基坑区域管廊的位移受土体约束而相对静止。位于平移转动区和相对扭转区内的管廊截面发生朝向基坑的剪切变形,管廊顶板相对底板发生朝向基坑的水平相对移动;邻近基坑一侧市政舱顶板和远离基坑一侧侧墙下半部分发生较大挠曲变形。管廊与基坑间距对3个变形特征区域的分布没有显著影响,但管廊离基坑越近会使得管廊结构的变形程度越大。Abstract: With the development and utilization of urban underground space, more and more basement excavations were located nearby an existing utility tunnel and have an important impact on the safety and waterproof performance of the utility tunnel. Based on a field case in Xiamen, a three-dimensional finite element analysis was conducted, using PLAXIS 3D with a HS-Small small-strain soil constitutive model, to investigate the effects of basement excavation on an adjacent double-compartment utility tunnel. The numerical results show that the deformation mechanism of an adjacent utility tunnel induced by excavation can be divided into three characteristic deformation modes, namely a translational-rotation zone, a relative torsion zone and a displacement constraint zone. Around the middle part of the basement excavation, the utility tunnel shifts towards the basement and rotates about its axis. Around the boundary of the basement excavation, the utility tunnel was subjected to relatively torsion. In a zone far from the basement, the utility tunnel was constrained by the surrounding soil and was relatively static. The cross-section of the utility tunnel located in the translational-rotation zone and the relative torsion zone was sheared towards the basement excavation. The roof of the utility tunnel displaces horizontally relative to the floor. Besides, the roof of the municipal compartment near the basement excavation and the lower part of the side wall far away from the basement excavation experience larger deformation. The distance between the utility tunnel and the basement has insignificant effect on the distribution of the three deformation characteristic zones. The closer the basement excavation is to the utility tunnel, the greater the deformation of the utility tunnel.
-
Key words:
- Basement excavation /
- Utility tunnel /
- Numerical analysis /
- Deformation /
- Interaction
-
表 1 HS-Small土体模型计算参数
Table 1. Calculation parameters of HS-Small soil model
土层 厚度/m γ/kN·m-3 c′/kPa φ′/(°) K0 m vur ψ/(°) Rf E50ref/MPa Eoedref/MPa Eurref/MPa γ0.7/×10-4 G0ref/MPa ①人工填土 3 18 12.0 12 0.79 0.8 0.2 0 0.9 14.4 8 72 3 288 ②淤泥 1 16 15.0 10 0.86 0.8 0.3 0 0.6 2.5 5 25 3 100 ③中砂 5 19 4.0 27 0.55 0.8 0.2 0 0.9 16.2 9 81 3 324 ④残积砂质黏性土 10 19 25.7 27 0.55 0.8 0.2 0 0.9 18.0 10 90 3 360 ⑤全风化花岗岩 11 19 26.0 28 0.53 0.8 0.2 0 0.9 23.4 13 117 3 468 表 2 结构模型材料计算参数
Table 2. Material calculation parameters of structural model
结构 材料模型 E/GPa γ/kN·m-3 管廊、围护墙、冠梁、内支撑、立柱桩 线弹性 32 25 表 3 管廊不同截面变形信息表
Table 3. Deformation information table of different section of utility tunnel
变形 截面位置 腋角① 腋角② 腋角③ 腋角④ 水平位移/mm 基坑中部 1.43 1.40 1.15 1.14 基坑边界 0.55 0.54 0.44 0.44 竖向位移/mm 基坑中部 0.71 0.48 0.71 0.48 基坑边界 0.31 0.24 0.31 0.23 -
Benz T. 2007. Small-strain stiffness of soils and its numerical consequences[M]. Stuttgart: Univ. Stuttgart, Inst. f. Geotechnik. Brinkgreve R B J, Broere W. 2006. Plaxis material models manual[M]. Delft: Delft University of Technology. Chen R P, Meng F Y, Li Z C, et al. 2016. Investigation of response of metro tunnels due to adjacent large excavation and protective measures in soft soils[J]. Tunnelling and Underground Space Technology Incorporating Trenchless Technology Research, 58 : 224-235. Gu Y. 2018. Study on the influence of deep foundation pit construction on underground comprehensive pipe gallery[D]. Dalian: Dalian University of Technology: 1-11. Hu R G, Liu H J, Wang Z Y, et al. 2020. Deformation analysis of supporting structure for soil-rock combination foundation pit with adjacent buildings in coastal area[J]. Journal of Engineering Geology, 28 (6): 1368-1377. Lin H, Chen J Y, Guo C, et al. 2015. Numerical analysis on influence of foundation pit excavation on deformation of adjacent existing tunnel[J]. Jouranl of Central South University(Science and Technology), 46 (11): 4240-4247. Meng F Y. 2015. Effects of construction-induced disturbance on post-construction settlements of shield tunnel and ground in soft clayey strata[D]. Zhejiang: Zhejiang University: 1-13. Ng C W W, Shi J W, Hong Y. 2013. Three-dimensional centrifuge modelling of basement excavation effects on an existing tunnel in dry sand[J]. Canadian Geotechnical Journal, 50 (8): 874-888. doi: 10.1139/cgj-2012-0423 Qian Q H, Chen X Q. 2007. Situation, problems and counterm easures of utility tunnel development in China and abroad[J]. Chinese Journal of Underground Space and Engineering, 3 (2): 191-194. Qin S W, Miao Q, Zhang L S, et al. 2020. Finite element analysis on influence of excavation and support removal of foundation pit to surrounding environment[J]. Journal of Engineering Geology, 28 (5): 1106-1115. Shi J W, Chen L. 2018. Investigation on three-dimensional deformation mechanisms of metro tunnels due to overlying circular basement excavation[J]. Chinese Journal of Underground Space and Engineering, 14 (4): 1083-1090. The National Standards Compilation Group of People's Republic of China. 2019. Technical standard for operation, maintenance and safety management of urban utility tunnel(GB 51354-2019)[S]. Beijing: China Architecture & Building Press. Wang W D, Wang H R, Xu Z H. 2012. Experimental study of parameters of hardening soil model for numerical analysis of excavations of foundation pits[J]. Rock and Soil Mechanics, 33 (8): 2283-2290. Wang W D, Wang H R, Xu Z H. 2013. Study of parameters of HS-Small model used in numerical analysis of excavations in Shanghai area[J]. Rock and Soil Mechanics, 34 (6): 1766-1774. Wei S W, Zhang Y F, Zheng G. 2013. Three dimensional numerical investigation of the influence of basement excavation on underlying tunnels[J]. Journal of Civil, Architectural & Environmental Engineering, 35 (S1): 112-116. Xu C J, Sun F M, Chen J Y, et al. 2013. Analysis on the deformation and stress control measures of metro tunnel near a foundation pit[J]. Journal of Civil, Architectural & Environmental Engineering, 35 (S1): 75-80. Yang M, Li H R, Li N, et al. 2020. Effect of subway excavation with different support pressures on existing utility tunnel in Xi'an loess[J]. Advances in Civil Engineering, 2020 (2): 1-14. Ying H W, Cheng K, Yu J L, et al. 2021. Prediction of shield tunnel displacement due to adjacent basement excavation considering continuous deformation of ground[J]. Journal of Zhejiang University(Engineering Science), 55 (2): 318-329. You X H, He G Y, Wang Q X, et al. 2019. Current status and development trend of urban underground space in China[J]. Tunnel Construction, 39 (2): 173-188. Zhang J, Xie R, Zhang H. 2018. Mechanical response analysis of the buried pipeline due to adjacent foundation pit excavation[J]. Tunnelling and Underground Space Technology, 78 (78): 135-145. Zheng G, Du Y M, Diao Y, et al. 2016. Influenced zones for deformation of existing tunnels adjacent to excavations[J]. Chinese Journal of Geotechnical Engineering, 38 (4): 599-612. 顾毅. 2018. 深基坑施工对地下综合管廊的影响研究[D]. 大连: 大连理工大学: 1-11. 胡瑞庚, 刘红军, 王兆耀, 等. 2020. 邻近建筑物的滨海土岩组合基坑支护结构变形分析[J]. 工程地质学报, 28 (6): 1368-1377. doi: 10.13544/j.cnki.jeg.2019-545 林杭, 陈靖宇, 郭春, 等. 2015. 基坑开挖对邻近既有隧道变形影响范围的数值分析[J]. 中南大学学报(自然科学版), 46 (11): 4240-4247. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201511035.htm 孟凡衍. 2019. 软黏土地层施工扰动对盾构隧道和地基工后沉降影响[D]. 浙江: 浙江大学: 1-13. 钱七虎, 陈晓强. 2007. 国内外地下综合管线廊道发展的现状、问题及对策[J]. 地下空间与工程学报, 3 (2): 191-194. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE200702000.htm 秦胜伍, 苗强, 张领帅, 等. 2020. 基坑开挖与支撑拆除对周围环境影响的研究[J]. 工程地质学报, 28 (5): 1106-1115. doi: 10.13544/j.cnki.jeg.2020-275 史江伟, 陈丽. 2018. 圆形基坑开挖引起下卧隧道三维变形机理研究[J]. 地下空间与工程学报, 14 (4): 1083-1090. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201804029.htm 王卫东, 王浩然, 徐中华. 2012. 基坑开挖数值分析中土体硬化模型参数的试验研究[J]. 岩土力学, 33 (8): 2283-2290. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201208010.htm 王卫东, 王浩然, 徐中华. 2013. 上海地区基坑开挖数值分析中土体HS-Small模型参数的研究[J]. 岩土力学, 34 (6): 1766-1774. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201306037.htm 魏少伟, 张玉芳, 郑刚. 2013. 基坑开挖对坑底已建隧道影响的三维数值分析[J]. 土木建筑与环境工程, 35 (S1): 112-116. https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN2013S1026.htm 徐长节, 孙凤明, 陈金友, 等. 2013. 基坑相邻地铁隧道变形与应力控制措施[J]. 土木建筑与环境工程, 35 (S1): 75-80. https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN2013S1019.htm 应宏伟, 程康, 俞建霖, 等. 2021. 考虑地基变形连续的基坑开挖诱发邻近盾构隧道位移预测[J]. 浙江大学学报(工学版), 55 (2): 318-329. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC202102012.htm 油新华, 何光尧, 王强勋, 等. 2019. 我国城市地下空间利用现状及发展趋势[J]. 隧道建设(中英文), 39 (2): 173-188. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD201902002.htm 郑刚, 杜一鸣, 刁钰, 等. 2016. 基坑开挖引起邻近既有隧道变形的影响区研究[J]. 岩土工程学报, 38 (4): 599-612. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201604004.htm 中华人民共和国国家标准编写组. 2019. 城市地下综合管廊运行维护及安全技术标准(GB 51354-2019)[S]. 北京: 中国建筑工业出版社. -