基坑开挖对邻近双舱综合管廊影响的三维数值分析

林鼎宗 蔡奇鹏 黄翀 程玉果 庄言 郭力群 陈星欣

林鼎宗, 蔡奇鹏, 黄翀, 等. 2023. 基坑开挖对邻近双舱综合管廊影响的三维数值分析[J]. 工程地质学报, 31(5): 1738-1747. doi: 10.13544/j.cnki.jeg.2021-0665
引用本文: 林鼎宗, 蔡奇鹏, 黄翀, 等. 2023. 基坑开挖对邻近双舱综合管廊影响的三维数值分析[J]. 工程地质学报, 31(5): 1738-1747. doi: 10.13544/j.cnki.jeg.2021-0665
Lin Dingzong, Cai Qipeng, Huang Chong, et al. 2023. Three-dimensional numerical analysis of excavation effect on adjacent double-compartment utility tunnel[J]. Journal of Engineering Geology, 31(5): 1738-1747. doi: 10.13544/j.cnki.jeg.2021-0665
Citation: Lin Dingzong, Cai Qipeng, Huang Chong, et al. 2023. Three-dimensional numerical analysis of excavation effect on adjacent double-compartment utility tunnel[J]. Journal of Engineering Geology, 31(5): 1738-1747. doi: 10.13544/j.cnki.jeg.2021-0665

基坑开挖对邻近双舱综合管廊影响的三维数值分析

doi: 10.13544/j.cnki.jeg.2021-0665
基金项目: 

福建省科技计划项目 2022Y4015

福厦泉国家自主创新示范区协同创新平台项目 3502ZCQXT2022002

国家自然科学基金项目 52378342

国家自然科学基金项目 52308400

详细信息
    作者简介:

    林鼎宗(1993-),男,硕士生,主要从事工程地质力学方面的科研工作. E-mail: 444205927@qq.com

    通讯作者:

    蔡奇鹏(1982-),男,博士,教授,博士生导师,主要从事工程地质力学方面的科研与教学工作. E-mail: cqp@hqu.edu.cn

  • 中图分类号: TV551.4+2

THREE-DIMENSIONAL NUMERICAL ANALYSIS OF EXCAVATION EFFECT ON ADJACENT DOUBLE-COMPARTMENT UTILITY TUNNEL

Funds: 

Science and Technology Project Foundation of Fujian Province 2022Y4015

Collaborative Innovation Platfrom Project of Fuzhou-Xiamen-Quanzhou National Self-Innovtion Zone 3502ZCQXT2022002

National Natural Science Foundation of China 52378342

National Natural Science Foundation of China 52308400

  • 摘要: 随着城市地下空间的开发利用,出现越来越多邻近地下综合管廊基坑开挖的工程案例,对管廊结构安全及防水性能产生重要影响。以厦门某邻近既有双舱综合管廊的基坑开挖项目为研究背景,采用PLAXIS 3D建立三维有限元分析模型,基于HS-small小应变土体本构模型,模拟基坑开挖过程对综合管廊的影响。研究结果表明,开挖后,邻近综合管廊沿轴线方向的变形受力模式可分为平移转动区、相对扭转区和位移约束区3个特征区域。基坑中部附近管廊发生朝向基坑的平移和绕轴转动,基坑边界附近管廊发生相对扭转,远离基坑区域管廊的位移受土体约束而相对静止。位于平移转动区和相对扭转区内的管廊截面发生朝向基坑的剪切变形,管廊顶板相对底板发生朝向基坑的水平相对移动;邻近基坑一侧市政舱顶板和远离基坑一侧侧墙下半部分发生较大挠曲变形。管廊与基坑间距对3个变形特征区域的分布没有显著影响,但管廊离基坑越近会使得管廊结构的变形程度越大。
  • 图  1  邻近综合管廊基坑开挖工程案例

    Figure  1.  Excavation adjacent to a utility tunnel

    图  2  数值模型示意图(单位:m)

    a. 网格划分和边界条件;b. 基坑与管廊的位置关系;c. 管廊模型尺寸

    Figure  2.  Numerical model(unit: m)

    图  3  基坑分区开挖模拟

    Figure  3.  Zoned excavation in numerical modelling

    图  4  基坑开挖后地表水平位移云图

    Figure  4.  Contours of horizontal displacement at the ground surface after excavation

    图  5  围护墙侧向位移实测与计算结果(单位:mm)

    a. 测斜管数据实测;b. X1点; c. X2点; d. X3点

    Figure  5.  Measured and computed horizontal displacement of retaining wall(unit: mm)

    图  6  a-a′断面处围护墙侧向位移及墙后地表沉降曲线

    Figure  6.  Horizontal displacements of retaining wall and ground surface settlements at section a-a′

    图  7  管廊腋角水平和竖向位移沿轴线分布曲线

    a. 管廊腋角水平位移;b. 管廊腋角竖向位移

    Figure  7.  Horizontal and vertical displacement profile of utility tunnel at axillary angle

    图  8  管廊底板和侧墙转动角沿轴线分布曲线

    Figure  8.  Distribution of torsion angles of floor and side wall of utility tunnel along axis

    图  9  管廊腋角轴向应变

    Figure  9.  Distribution of axial strains at axillary angle

    图  10  基坑开挖前后截面变形对比图(基坑中部)

    Figure  10.  Cross sections of utility tunnel before and after excavation(at the middle of excavation)

    图  11  管廊结构外墙切向应变(基坑中部)

    Figure  11.  Tangential strains along the outer surface of utility tunnel(at the middle of excavation)

    图  12  基坑开挖前后截面变形对比图(基坑边界)

    Figure  12.  Cross sections of utility tunnel before and after excavation(at the corner of excavation)

    图  13  管廊结构外墙切向应变(基坑边界)

    Figure  13.  Tangential strains along the outer surface of utility tunnel(at the corner of excavation)

    图  14  管廊周围土压力(单位:kN·m-2)

    a. 基坑开挖前;b. 基坑开挖后

    Figure  14.  Distribution of earth pressure around the utility tunnel(unit: kN·m-2)

    图  15  管廊与基坑不同间距下截面扭转角

    Figure  15.  Distribution of torsion angle with different distances between excavation and utility tunnel

    图  16  管廊与基坑不同间距下截面扭转角(相对扭转区)

    Figure  16.  Distribution of torsion angle with different distances between excavation and utility tunnel

    图  17  不同管廊与基坑间距下基坑中部截面内管廊结构外侧应变分布(单位:με)

    Figure  17.  Tangential strains along the outer surface of utility tunnel at the middle of excavation with different distances between excavation and utility tunnel(unit: με)

    a. 2 m; b. 4 m; c. 6 m; d. 8 m; e. 10 m

    图  18  截面拉应变最大值随管廊与基坑间距的变化曲线

    Figure  18.  The influences of distance between excavation and utility tunnel on maximum tangential strains along the outer surface of utility tunnel

    表  1  HS-Small土体模型计算参数

    Table  1.   Calculation parameters of HS-Small soil model

    土层 厚度/m γ/kN·m-3 c′/kPa φ′/(°) K0 m vur ψ/(°) Rf E50ref/MPa Eoedref/MPa Eurref/MPa γ0.7/×10-4 G0ref/MPa
    ①人工填土 3 18 12.0 12 0.79 0.8 0.2 0 0.9 14.4 8 72 3 288
    ②淤泥 1 16 15.0 10 0.86 0.8 0.3 0 0.6 2.5 5 25 3 100
    ③中砂 5 19 4.0 27 0.55 0.8 0.2 0 0.9 16.2 9 81 3 324
    ④残积砂质黏性土 10 19 25.7 27 0.55 0.8 0.2 0 0.9 18.0 10 90 3 360
    ⑤全风化花岗岩 11 19 26.0 28 0.53 0.8 0.2 0 0.9 23.4 13 117 3 468
    下载: 导出CSV

    表  2  结构模型材料计算参数

    Table  2.   Material calculation parameters of structural model

    结构 材料模型 E/GPa γ/kN·m-3
    管廊、围护墙、冠梁、内支撑、立柱桩 线弹性 32 25
    下载: 导出CSV

    表  3  管廊不同截面变形信息表

    Table  3.   Deformation information table of different section of utility tunnel

    变形 截面位置 腋角① 腋角② 腋角③ 腋角④
    水平位移/mm 基坑中部 1.43 1.40 1.15 1.14
    基坑边界 0.55 0.54 0.44 0.44
    竖向位移/mm 基坑中部 0.71 0.48 0.71 0.48
    基坑边界 0.31 0.24 0.31 0.23
    下载: 导出CSV
  • Benz T. 2007. Small-strain stiffness of soils and its numerical consequences[M]. Stuttgart: Univ. Stuttgart, Inst. f. Geotechnik.
    Brinkgreve R B J, Broere W. 2006. Plaxis material models manual[M]. Delft: Delft University of Technology.
    Chen R P, Meng F Y, Li Z C, et al. 2016. Investigation of response of metro tunnels due to adjacent large excavation and protective measures in soft soils[J]. Tunnelling and Underground Space Technology Incorporating Trenchless Technology Research, 58 : 224-235.
    Gu Y. 2018. Study on the influence of deep foundation pit construction on underground comprehensive pipe gallery[D]. Dalian: Dalian University of Technology: 1-11.
    Hu R G, Liu H J, Wang Z Y, et al. 2020. Deformation analysis of supporting structure for soil-rock combination foundation pit with adjacent buildings in coastal area[J]. Journal of Engineering Geology, 28 (6): 1368-1377.
    Lin H, Chen J Y, Guo C, et al. 2015. Numerical analysis on influence of foundation pit excavation on deformation of adjacent existing tunnel[J]. Jouranl of Central South University(Science and Technology), 46 (11): 4240-4247.
    Meng F Y. 2015. Effects of construction-induced disturbance on post-construction settlements of shield tunnel and ground in soft clayey strata[D]. Zhejiang: Zhejiang University: 1-13.
    Ng C W W, Shi J W, Hong Y. 2013. Three-dimensional centrifuge modelling of basement excavation effects on an existing tunnel in dry sand[J]. Canadian Geotechnical Journal, 50 (8): 874-888. doi: 10.1139/cgj-2012-0423
    Qian Q H, Chen X Q. 2007. Situation, problems and counterm easures of utility tunnel development in China and abroad[J]. Chinese Journal of Underground Space and Engineering, 3 (2): 191-194.
    Qin S W, Miao Q, Zhang L S, et al. 2020. Finite element analysis on influence of excavation and support removal of foundation pit to surrounding environment[J]. Journal of Engineering Geology, 28 (5): 1106-1115.
    Shi J W, Chen L. 2018. Investigation on three-dimensional deformation mechanisms of metro tunnels due to overlying circular basement excavation[J]. Chinese Journal of Underground Space and Engineering, 14 (4): 1083-1090.
    The National Standards Compilation Group of People's Republic of China. 2019. Technical standard for operation, maintenance and safety management of urban utility tunnel(GB 51354-2019)[S]. Beijing: China Architecture & Building Press.
    Wang W D, Wang H R, Xu Z H. 2012. Experimental study of parameters of hardening soil model for numerical analysis of excavations of foundation pits[J]. Rock and Soil Mechanics, 33 (8): 2283-2290.
    Wang W D, Wang H R, Xu Z H. 2013. Study of parameters of HS-Small model used in numerical analysis of excavations in Shanghai area[J]. Rock and Soil Mechanics, 34 (6): 1766-1774.
    Wei S W, Zhang Y F, Zheng G. 2013. Three dimensional numerical investigation of the influence of basement excavation on underlying tunnels[J]. Journal of Civil, Architectural & Environmental Engineering, 35 (S1): 112-116.
    Xu C J, Sun F M, Chen J Y, et al. 2013. Analysis on the deformation and stress control measures of metro tunnel near a foundation pit[J]. Journal of Civil, Architectural & Environmental Engineering, 35 (S1): 75-80.
    Yang M, Li H R, Li N, et al. 2020. Effect of subway excavation with different support pressures on existing utility tunnel in Xi'an loess[J]. Advances in Civil Engineering, 2020 (2): 1-14.
    Ying H W, Cheng K, Yu J L, et al. 2021. Prediction of shield tunnel displacement due to adjacent basement excavation considering continuous deformation of ground[J]. Journal of Zhejiang University(Engineering Science), 55 (2): 318-329.
    You X H, He G Y, Wang Q X, et al. 2019. Current status and development trend of urban underground space in China[J]. Tunnel Construction, 39 (2): 173-188.
    Zhang J, Xie R, Zhang H. 2018. Mechanical response analysis of the buried pipeline due to adjacent foundation pit excavation[J]. Tunnelling and Underground Space Technology, 78 (78): 135-145.
    Zheng G, Du Y M, Diao Y, et al. 2016. Influenced zones for deformation of existing tunnels adjacent to excavations[J]. Chinese Journal of Geotechnical Engineering, 38 (4): 599-612.
    顾毅. 2018. 深基坑施工对地下综合管廊的影响研究[D]. 大连: 大连理工大学: 1-11.
    胡瑞庚, 刘红军, 王兆耀, 等. 2020. 邻近建筑物的滨海土岩组合基坑支护结构变形分析[J]. 工程地质学报, 28 (6): 1368-1377. doi: 10.13544/j.cnki.jeg.2019-545
    林杭, 陈靖宇, 郭春, 等. 2015. 基坑开挖对邻近既有隧道变形影响范围的数值分析[J]. 中南大学学报(自然科学版), 46 (11): 4240-4247. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201511035.htm
    孟凡衍. 2019. 软黏土地层施工扰动对盾构隧道和地基工后沉降影响[D]. 浙江: 浙江大学: 1-13.
    钱七虎, 陈晓强. 2007. 国内外地下综合管线廊道发展的现状、问题及对策[J]. 地下空间与工程学报, 3 (2): 191-194. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE200702000.htm
    秦胜伍, 苗强, 张领帅, 等. 2020. 基坑开挖与支撑拆除对周围环境影响的研究[J]. 工程地质学报, 28 (5): 1106-1115. doi: 10.13544/j.cnki.jeg.2020-275
    史江伟, 陈丽. 2018. 圆形基坑开挖引起下卧隧道三维变形机理研究[J]. 地下空间与工程学报, 14 (4): 1083-1090. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201804029.htm
    王卫东, 王浩然, 徐中华. 2012. 基坑开挖数值分析中土体硬化模型参数的试验研究[J]. 岩土力学, 33 (8): 2283-2290. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201208010.htm
    王卫东, 王浩然, 徐中华. 2013. 上海地区基坑开挖数值分析中土体HS-Small模型参数的研究[J]. 岩土力学, 34 (6): 1766-1774. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201306037.htm
    魏少伟, 张玉芳, 郑刚. 2013. 基坑开挖对坑底已建隧道影响的三维数值分析[J]. 土木建筑与环境工程, 35 (S1): 112-116. https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN2013S1026.htm
    徐长节, 孙凤明, 陈金友, 等. 2013. 基坑相邻地铁隧道变形与应力控制措施[J]. 土木建筑与环境工程, 35 (S1): 75-80. https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN2013S1019.htm
    应宏伟, 程康, 俞建霖, 等. 2021. 考虑地基变形连续的基坑开挖诱发邻近盾构隧道位移预测[J]. 浙江大学学报(工学版), 55 (2): 318-329. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC202102012.htm
    油新华, 何光尧, 王强勋, 等. 2019. 我国城市地下空间利用现状及发展趋势[J]. 隧道建设(中英文), 39 (2): 173-188. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD201902002.htm
    郑刚, 杜一鸣, 刁钰, 等. 2016. 基坑开挖引起邻近既有隧道变形的影响区研究[J]. 岩土工程学报, 38 (4): 599-612. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201604004.htm
    中华人民共和国国家标准编写组. 2019. 城市地下综合管廊运行维护及安全技术标准(GB 51354-2019)[S]. 北京: 中国建筑工业出版社.
  • 加载中
图(18) / 表(3)
计量
  • 文章访问数:  78
  • HTML全文浏览量:  10
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-08
  • 修回日期:  2022-02-25
  • 刊出日期:  2023-10-25

目录

    /

    返回文章
    返回