海底滑坡冲击下悬跨管道动态响应及安全性评估

付崔伟 张浩 郭兴森 谷忠德 年廷凯

付崔伟, 张浩, 郭兴森, 等. 2021. 海底滑坡冲击下悬跨管道动态响应及安全性评估[J].工程地质学报, 29(6): 1841-1848. doi: 10.13544/j.cnki.jeg.2021-0670
引用本文: 付崔伟, 张浩, 郭兴森, 等. 2021. 海底滑坡冲击下悬跨管道动态响应及安全性评估[J].工程地质学报, 29(6): 1841-1848. doi: 10.13544/j.cnki.jeg.2021-0670
Fu Cuiwei, Zhang Hao, Guo Xingsen, et al. 2021. Dynamic responses and safety evaluation of suspended pipelines impacted by submarine landslides[J].Journal of Engineering Geology, 29(6): 1841-1848. doi: 10.13544/j.cnki.jeg.2021-0670
Citation: Fu Cuiwei, Zhang Hao, Guo Xingsen, et al. 2021. Dynamic responses and safety evaluation of suspended pipelines impacted by submarine landslides[J].Journal of Engineering Geology, 29(6): 1841-1848. doi: 10.13544/j.cnki.jeg.2021-0670

海底滑坡冲击下悬跨管道动态响应及安全性评估

doi: 10.13544/j.cnki.jeg.2021-0670
基金项目: 

国家自然科学基金 51879036

国家自然科学基金 52079020

辽宁省兴辽英才计划项目 XLYC2002036

详细信息
    作者简介:

    付崔伟(1990-), 男, 博士, 助理研究员, 主要从事海底管道与土体相互作用方面的研究. E-mail:fucuiwei2013@163.com

    通讯作者:

    年廷凯(1971-), 男, 博士, 教授, 博士生导师, 主要从事海洋岩土力学与能源岩土工程、工程地质环境与地质灾害领域的教学和科研工作. E-mail:tknian@dlut.edu.cn

  • 中图分类号: P756

DYNAMIC RESPONSES AND SAFETY EVALUATION OF SUSPENDED PIPELINES IMPACTED BY SUBMARINE LANDSLIDES

  • 摘要: 作为一种常见的海洋地质灾害,海底滑坡会对油气管道的安全造成巨大威胁。由于海洋底流的冲刷作用,海底管道往往会悬跨于海床之上,稳定性较差。当悬跨管道遭受到海底滑坡的冲击作用后,其动态响应预测及安全性评估尤为重要。本文建立了海底滑坡-管道相互作用的有限元模型,将油气管道分为悬跨段和埋地段,考虑了悬跨长度和高度变化条件下,油气管道遭受海底滑坡冲击作用时的动态响应。数值计算结果表明,管道悬跨长度和高度对其塑性变形影响显著,海底滑坡引起的管道应变会随着悬跨长度和高度的增加而增大。最后,提出了综合考虑悬跨长度和高度影响下海底管道安全性评估方法,该成果可直接用于海底滑坡作用下油气管道安全性的动态评估。
  • 图  1  海底管道与滑坡相互作用物理模型

    a. 三维模型;b. 简化平面应变物理模型

    Figure  1.  Physical model of submarine pipeline-landslide interaction

    图  2  X60管道应力-应变关系曲线

    Figure  2.  Stress-strain relationship of X60 steel pipe

    图  3  PSI单元示意图

    Figure  3.  Sketch of PSI element

    图  4  有限元模型示意图

    Figure  4.  Illustration of finite element model

    图  5  管道最大应变随管道悬跨高度比的变化

    Figure  5.  Variation of maximum pipe strain with landslide span height ratio

    图  6  管道最大应变随滑坡体宽度的变化

    Figure  6.  Variation of maximum pipe strain with landslide width

    图  7  海底管道安全性评估图

    a. Hs/D=0;b. Hs/D=0.5

    Figure  7.  Illustration of submarine pipeline safety evaluation

    表  1  有限元分析所需参数取值

    Table  1.   Values of required parameters in finite element analysis

    参数 取值
    管道参数 直径D/m 1
    壁厚t/m 0.04
    钢材型号 X60
    埋深Hc/m 0.5
    总长度L/m 3000
    悬跨长度Ls/m 600
    悬跨高度Hs/m 0
    滑坡体参数 宽度B/m 200
    速度v/m·s-1 6
    密度ρ/kg·m-3 1500
    参考剪切强度su,ref/kPa 0.3
    参考剪切速率${\dot \gamma } $ref/s-1 1×10-5
    指数β 0.13
    海床土体参数 不排水剪强度su/kPa 5
    下载: 导出CSV
  • ABAQUS. 2014. Analysis user's manual[CP]. version 6.14. Providence, RI: Dassault Systèmes Simulia Corporation.
    ALA. 2005. Guidelines for the design of buried steel pipe[M]. American Lifelines Alliance.
    ASCE. 1984. Guidelines for the seismic design of oil and gas pipeline systems[M]. New York: Technical Council on Lifeline Earthquake Engineering, Committee on Gas and Liquid Fuel Lifelines.
    Chatzidakis D, Tsompanakis Y, Psarropoulos P N. 2018. Numerical study of offshore natural gas pipelines subjected to submarine landslides[C]//Proceedings of the 9th GRACM International Congress on Computational Mechanics. Chania, Greece: [s. n. ].
    Chatzidakis D, Tsompanakis Y, Psarropoulos P N. 2019. An improved analytical approach for simulating the lateral kinematic distress of deepwater offshore pipelines[J]. Applied Ocean Research, 90: 101852. doi: 10.1016/j.apor.2019.101852
    Dong Y K, Ma J J, Wang D, et al. 2019. Investigation of landslide in deep sea using material point method[J]. The Ocean Engineering, 37 (5): 141-147. http://en.cnki.com.cn/Article_en/CJFDTotal-HYGC201905016.htm
    Dong Y, Wang D, Randolph M F. 2017. Investigation of impact forces on pipeline by submarine landslide using material point method[J]. Ocean Engineering, 146 : 21-28. doi: 10.1016/j.oceaneng.2017.09.008
    Fan N. 2019. Study on strength properties of submarine slides and their impact on pipelines[D]. Dalian: Dalian University of Technology.
    Guo X S, Nian T K, Gu Z D, et al. 2021. Evaluation methodology of laminar-turbulent flow state for fluidized material with special reference to submarine landslide[J]. Journal of Waterway, Port, Coastal and Ocean Engineering, 147(1): 04020048. doi: 10.1061/(ASCE)WW.1943-5460.0000616
    Guo X S, Nian T K, Wang F W, et al. 2019a. Landslides impact reduction effect by using honeycomb-hole submarine pipeline[J]. Ocean Engineering, 187: 106155. doi: 10.1016/j.oceaneng.2019.106155
    Guo X S, Zheng D F, Nian T K, et al. 2019b. Effect of different span heights on the pipeline impact forces induced by deep-sea landslides[J]. Applied Ocean Research, 87 : 38-46. doi: 10.1016/j.apor.2019.03.009
    Guo X S. 2021. Study on the susceptibility of submarine seismic landslide and landslide-pipeline interaction[D]. Dalian: Dalian University of Technology.
    Hance J J. 2003. Development of a database and assessment of seafloor slope stability based on published literature[D]. Austin, Texas, USA: The University of Texas at Austin.
    Huo Y D, Nian T K, Jiao H B, et al. 2019. Seismic stability of submarine clay slopes based on upper bound approach[J]. Journal of Engineering Geology, 27 (2): 408-414. http://en.cnki.com.cn/Article_en/CJFDTotal-GCDZ201902022.htm
    Jiang S Y, Sheng J L, Chen G M, et al. 2020. Study on safety limits of the pipe-lines under submarine glide block[J]. Then Ocean Engi-neering, 38 (2): 128-134.
    Jing S D, Jin Y D. 2012. Application of side scan sonar to exploration of submarine pipeline landform characteristics[J]. Journal of Engineering Geology, 20 (5): 827-831. http://en.cnki.com.cn/Article_en/CJFDTOTAL-GCDZ201205026.htm
    Li C Y, Zhang W, Wu F D, et al. 2018. Run-out process simulation of submarine landslide using material point method[J]. Journal of Engineering Geology, 26 (S1): 114-119.
    Li H W, Wang L Z, Guo Z, et al. 2015. Drag force of submarine landslides mudflow impacting on a suspended pipeline[J]. The Ocean Engineering, 33 (6): 10-19. http://en.cnki.com.cn/Article_en/CJFDTotal-HYGC201506002.htm
    Li X, Liu Y K, Zhou J, et al. 2003. Experimental investigation and numerical simulation of dynamic response of free spanning submarine pipelines[J]. Engineering Mechanics, 20 (2): 21-25. http://d.wanfangdata.com.cn/Periodical/gclx200302005
    Liu J, Gao W, Li P, et al. 2018. Research progress in submarine landslide and its enlightenment to study the seabed stability in the South China Sea[J]. Journal of Engineering Geology, 26 (S1): 120-127.
    Liu R, Guo S Z, Wang H, et al. 2013. Soil resistance acting on buried pipelines in Bohai Bay soft clay[J]. Chinese Journal of Geotechnical Engineering, 35 (5): 961-967. http://en.cnki.com.cn/Article_en/CJFDTOTAL-YTGC201305026.htm
    Masson D G, Harbitz C B, Wynn R B, et al. 2006. Submarine landslides: processes, triggers and hazard prediction[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 364(1845): 2009-2039. doi: 10.1098/rsta.2006.1810
    Ni P, Mangalathu S. 2018. Fragility analysis of gray iron pipelines subjected to tunneling induced ground settlement[J]. Tunnelling and Underground Space Technology, 76 : 133-144. doi: 10.1016/j.tust.2018.03.014
    Nian T K, Guo X S, Fan N, et al. 2018. Impact forces of submarine landslides on suspended pipelines considering the low-temperature environment[J]. Applied Ocean Research, 81 : 116-125. doi: 10.1016/j.apor.2018.09.016
    Nian T K, Guo X S, Zheng D F, et al. 2019. Susceptibility assessment of regional submarine landslides triggered by seismic actions[J]. Applied Ocean Research, 93: 101964. doi: 10.1016/j.apor.2019.101964
    Nian T K, Liu M, Liu B, et al. 2016. Stability analysis of clayey sloping seabed under extreme wave loads[J]. The Ocean Engineering, 34 (4): 9-15. http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYGC201604002.htm
    O′Rourke M J, Liu X. 2012. Seismic design of buried and offshore pipelines[R]. New York, USA: Multidisciplinary Center for Earthquake Engineering Research.
    Palmer A C, King R A. 2008. Subsea pipeline engineering[M]. 2nd edition. Tulsa, Oklahoma, USA: PennWell Books.
    Parker E J, Traverso C M, Moore R, et al. 2008. Evaluation of landslide impact on deepwater submarine pipelines[C]//Offshore Technology Conference, Houston, Texas, USA.
    Pei Y, He Y B, Li H, et al. 2015. Discuss about relationship between high-density turbidity current and sandy debris flow[J]. Geological Review, 61 (6): 1281-1292. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP201506010.htm
    Ramberg W, Osgood W R. 1943. Description of stress-strain curves by three parameters[R]. Washington, DC, United States: National Advisory Committee for Aeronautics(NACA).
    Randolph M F, Seo D, White D J. 2010. Parametric solutions for slide impact on pipelines[J]. Journal of Geotechnical and Geoen-viron-mental Engineering, 136 (7): 940-949. doi: 10.1061/(ASCE)GT.1943-5606.0000314
    Shi J W, Wang Y, Chen Y H. 2018. A simplified method to estimate curvatures of continuous pipelines induced by normal fault movement[J]. Canadian Geotechnical Journal, 55 (3): 343-352. doi: 10.1139/cgj-2017-0044
    Song X L, Zhao W, Nian T K, et al. 2020. Experiment simulation of submarine clayey slope failure induced by gas hydrate dissociation[J]. Journal of Shanghai Jiaotong University, 54 (1): 43-51.
    Sui T, Staunstrup L H, Carstensen S, et al. 2021. Span shoulder migration in three-dimensional current-induced scour beneath submerged pipelines[J]. Coastal Engineering, 164: 103776. doi: 10.1016/j.coastaleng.2020.103776
    Sun Q L, Xie X N, Wu S G. 2021. Submarine landslides in the northern South China Sea: characteristics, geohazard evaluation and perspectives[J]. Earth Science Frontiers, 28 (2): 258-270.
    Wang L, Deng Q L. 2010. Mechanical analysis on the safety of gas-transporting pipeline caused by landslide deformation[J]. Journal of Engineering Geology, 18 (S1): 340-345. http://www.gcdz.org/EN/abstract/abstract11023.shtml
    Wang Y, Shi J W, Ng C W W. 2011. Numerical modeling of tunneling effect on buried pipelines[J]. Canadian Geotechnical Journal, 48 (7): 1125-1137. doi: 10.1139/t11-024
    Wang Z T, Zhang Y, Yang Q, et al. 2019. Numerical analysis for impact of submarine landslides on pipelines[J]. Chinese Journal of Geotechnical Engineering, 41 (3): 567-573. http://www.sciencedirect.com/science/article/pii/S0141118718307557
    Wu S G, Chen S S, Wang Z J, et al. 2008. Submarine landslide and risk evaluation on its instability in the deepwater continental margin[J]. Geoscience, 22 (3): 430-437. http://d.wanfangdata.com.cn/periodical/xddz200803013
    Xie Y, Ma X F, Ning H F. 2017. Formation and damage mechanism of free spanning submarine pipeline[J]. Oil & Gas Storage and Transportation, 36 (12): 1436-1442. http://en.cnki.com.cn/Article_en/CJFDTotal-YQCY201712017.htm
    Xu W F, Che A L, Wang Z, et al. 2011. Destruction characteristic of seabed landslide during earthquake motion and its mechanism[J]. Journal of Shanghai Jiaotong University, 45 (5): 782-786. http://en.cnki.com.cn/Article_en/ http://search.cnki.net/down/default.aspx?filename=SHJT201105033&dbcode=CJFD&year=2011&dflag=pdfdown
    Yang B, Gao F P, Wu Y X. 2005. Numerical of the occurrence of pipeline spanning under the influence of steady current[J]. Shipbuilding of China, 45 (Z1): 281-288.
    Yu G L, Chen Q Q, Li Y H. 2007. Status and tendency of development of scour-prevention technique for submarine pipeline[J]. Water Resources and Hydropower Engineering, 38 (11): 30-33. http://en.cnki.com.cn/Article_en/CJFDTOTAL-SJWJ200711010.htm
    Yuan F, Li L L, Guo Z, et al. 2015. Landslide impact on submarine pipelines: analytical and numerical analysis[J]. Journal of Engineering Mechanics, 141(2): 4014109. doi: 10.1061/(ASCE)EM.1943-7889.0000826
    Yuan F, Wang L Z, Guo Z, et al. 2012a. A refined analytical model for landslide or debris flow impact on pipelines. Part I: surface pipelines[J]. Applied Ocean Research, 35 : 95-104. doi: 10.1016/j.apor.2011.12.001
    Yuan F, Wang L Z, Guo Z, et al. 2012b. A refined analytical model for landslide or debris flow impact on pipelines. Part Ⅱ: embedded pipelines[J]. Applied Ocean Research, 35 : 105-114. doi: 10.1016/j.apor.2011.12.002
    Zakeri A, Høeg K, Nadim F. 2008. Submarine debris flow impact on pipelines—part Ⅰ: experimental investigation[J]. Coastal Engineering, 55 (12): 1209-1218. doi: 10.1016/j.coastaleng.2008.06.003
    Zakeri A, Høeg K, Nadim F. 2009. Submarine debris flow impact on pipelines—part Ⅱ: numerical analysis[J]. Coastal Engineering, 56 (1): 1-10. doi: 10.1016/j.coastaleng.2008.06.005
    Zakeri A. 2009. Review of state-of-the-art: drag forces on submarine pipelines and piles caused by landslide or debris flow impact[J]. Journal of Offshore Mechanics and Arctic Engineering, 131(1): 014001. doi: 10.1115/1.2957922
    Zhao E J, Dong Y K, Tang Y Z, et al. 2021. Numerical investigation of hydrodynamic characteristics and local scour mechanism around submarine pipelines under joint effect of solitary waves and currents[J]. Ocean Engineering, 222: 108553. doi: 10.1016/j.oceaneng.2020.108553
    Zhu H X, Randolph M F. 2011. Numerical analysis of a cylinder moving through rate-dependent undrained soil[J]. Ocean Engineering, 38 (7): 943-953. doi: 10.1016/j.oceaneng.2010.08.005
    董友扣, 马家杰, 王栋, 等. 2019. 深海滑坡灾害的物质点法模拟[J]. 海洋工程, 37 (5): 141-147. https://www.cnki.com.cn/Article/CJFDTOTAL-HYGC201905016.htm
    范宁. 2019. 海底滑坡体的强度特性及其对管线的冲击作用研究[D]. 大连: 大连理工大学.
    郭兴森. 2021. 海底地震滑坡易发性与滑坡-管线相互作用研究[D]. 大连: 大连理工大学.
    霍沿东, 年廷凯, 焦厚滨, 等. 2019. 基于极限分析上限方法的海底斜坡地震稳定性[J]. 工程地质学报, 27 (2): 408-414. doi: 10.13544/j.cnki.jeg.2017-621
    姜诗源, 盛积良, 陈国明, 等. 2020. 海底滑坡作用下滩海管道结构安全分析[J]. 海洋工程, 38 (2): 128-134. https://www.cnki.com.cn/Article/CJFDTOTAL-HYGC202002015.htm
    荆少东, 金永德. 2012. 侧扫声纳系统在管道穿越段海底地貌特征探测中的应用[J]. 工程地质学报, 20 (5): 827-831. doi: 10.3969/j.issn.1004-9665.2012.05.025
    李宏伟, 王立忠, 国振, 等. 2015. 海底泥流冲击悬跨管道拖曳力系数分析[J]. 海洋工程, 33 (6): 10-19. https://www.cnki.com.cn/Article/CJFDTOTAL-HYGC201506002.htm
    李昕, 刘亚坤, 周晶, 等. 2003. 海底悬跨管道动力响应的试验研究和数值模拟[J]. 工程力学, 20 (2): 21-25. doi: 10.3969/j.issn.1000-4750.2003.02.005
    厉成阳, 张巍, 吴方东, 等. 2018. 海底滑坡运动全过程的物质点法模拟[J]. 工程地质学报, 26 (S1): 114-119. doi: 10.13544/j.cnki.jeg.2018117
    刘杰, 高伟, 李萍, 等. 2018. 深海滑坡研究进展及我国南海海底稳定性研究的现状与思考[J]. 工程地质学报, 26 (S1): 120-127. doi: 10.13544/j.cnki.jeg.2018199
    刘润, 郭绍曾, 王洪播, 等. 2013. 渤海湾软黏土对埋设海底管线约束力的研究[J]. 岩土工程学报, 35 (5): 961-967. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201305026.htm
    年廷凯, 刘敏, 刘博, 等. 2016. 极端波浪条件下黏土质斜坡海床稳定性解析[J]. 海洋工程, 34 (4): 9-15. https://www.cnki.com.cn/Article/CJFDTOTAL-HYGC201604002.htm
    裴羽, 何幼斌, 李华, 等. 2015. 高密度浊流和砂质碎屑流关系的探讨[J]. 地质论评, 61 (6): 1281-1292. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201506010.htm
    宋晓龙, 赵维, 年廷凯, 等. 2020. 水合物分解条件下海底黏土质斜坡破坏实验模拟[J]. 上海交通大学学报, 54 (1): 43-51. https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT202001008.htm
    孙启良, 解习农, 吴时国. 2021. 南海北部海底滑坡的特征、灾害评估和研究展望[J]. 地学前缘, 28 (2): 258-270.
    王磊, 邓清禄. 2010. 滑坡作用对输气管道危害的静力学分析[J]. 工程地质学报, 18 (S1): 340-345. http://www.gcdz.org/article/id/11023
    王忠涛, 张宇, 杨庆, 等. 2019. 海底滑坡对管线冲击力的数值分析[J]. 岩土工程学报, 41 (3): 567-573. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201903024.htm
    吴时国, 陈珊珊, 王志君, 等. 2008. 大陆边缘深水区海底滑坡及其不稳定性风险评估[J]. 现代地质, 22 (3): 430-437. doi: 10.3969/j.issn.1000-8527.2008.03.013
    谢英, 麻秀芬, 宁海峰. 2017. 海底悬跨管道形成及破坏机理[J]. 油气储运, 36 (12): 1436-1442. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY201712017.htm
    许文锋, 车爱兰, 王治, 等. 2011. 地震荷载作用下海底滑坡特征及其机理[J]. 上海交通大学学报, 45 (5): 782-786. https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT201105033.htm
    杨兵, 高福平, 吴应湘. 2004. 海流引起的海底管道周围砂质海床局部冲刷[J]. 中国造船, 45(Z1): 281-288. doi: 10.3969/j.issn.1000-4882.2004.z1.042
    喻国良, 陈琴琴, 李艳红. 2007. 海底管道防冲刷保护技术的发展现状与趋势[J]. 水利水电技术, 38 (11): 30-33. doi: 10.3969/j.issn.1000-0860.2007.11.008
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  177
  • HTML全文浏览量:  17
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-10
  • 修回日期:  2021-10-20
  • 刊出日期:  2021-12-25

目录

    /

    返回文章
    返回