DYNAMIC RESPONSES AND SAFETY EVALUATION OF SUSPENDED PIPELINES IMPACTED BY SUBMARINE LANDSLIDES
-
摘要: 作为一种常见的海洋地质灾害,海底滑坡会对油气管道的安全造成巨大威胁。由于海洋底流的冲刷作用,海底管道往往会悬跨于海床之上,稳定性较差。当悬跨管道遭受到海底滑坡的冲击作用后,其动态响应预测及安全性评估尤为重要。本文建立了海底滑坡-管道相互作用的有限元模型,将油气管道分为悬跨段和埋地段,考虑了悬跨长度和高度变化条件下,油气管道遭受海底滑坡冲击作用时的动态响应。数值计算结果表明,管道悬跨长度和高度对其塑性变形影响显著,海底滑坡引起的管道应变会随着悬跨长度和高度的增加而增大。最后,提出了综合考虑悬跨长度和高度影响下海底管道安全性评估方法,该成果可直接用于海底滑坡作用下油气管道安全性的动态评估。Abstract: Submarine landslides are a common type of marine geo-disasters and can cause huge threat to the safety of oil and gas pipelines. Due to scour effect of seabed currents, submarine pipelines are usually suspended above the seabed surface, leading to poor pipeline stability. When the suspended pipeline is impacted by the submarine landslide, prediction of pipeline dynamic responses and safety evaluation become especially important. In this study, a finite element model of submarine landslide-pipeline interaction is developed through dividing the pipeline into the suspended and burial sections. The model is capable of capturing dynamic responses of oil and gas pipelines subjected to submarine landslides considering different pipeline spanning lengths and heights. Numerical analyses show that the influence of spanning length and height on the plastic strain of the pipeline is conspicuous. The pipeline strain induced by submarine landslides increases with the increase of spanning length and height. Finally, combing the effect of spanning length and height, a safety evaluation method of suspended pipelines under the impact of submarine landslides is proposed. The results can be directly used for dynamic evaluation of oil and gas pipeline safety under the impact of submarine landslides.
-
Key words:
- Submarine landslide /
- Oil and gas pipeline /
- Spanning length /
- Spanning height /
- Pipeline response /
- Safety evaluation
-
表 1 有限元分析所需参数取值
Table 1. Values of required parameters in finite element analysis
参数 取值 管道参数 直径D/m 1 壁厚t/m 0.04 钢材型号 X60 埋深Hc/m 0.5 总长度L/m 3000 悬跨长度Ls/m 600 悬跨高度Hs/m 0 滑坡体参数 宽度B/m 200 速度v/m·s-1 6 密度ρ/kg·m-3 1500 参考剪切强度su,ref/kPa 0.3 参考剪切速率${\dot \gamma } $ref/s-1 1×10-5 指数β 0.13 海床土体参数 不排水剪强度su/kPa 5 -
ABAQUS. 2014. Analysis user's manual[CP]. version 6.14. Providence, RI: Dassault Systèmes Simulia Corporation. ALA. 2005. Guidelines for the design of buried steel pipe[M]. American Lifelines Alliance. ASCE. 1984. Guidelines for the seismic design of oil and gas pipeline systems[M]. New York: Technical Council on Lifeline Earthquake Engineering, Committee on Gas and Liquid Fuel Lifelines. Chatzidakis D, Tsompanakis Y, Psarropoulos P N. 2018. Numerical study of offshore natural gas pipelines subjected to submarine landslides[C]//Proceedings of the 9th GRACM International Congress on Computational Mechanics. Chania, Greece: [s. n. ]. Chatzidakis D, Tsompanakis Y, Psarropoulos P N. 2019. An improved analytical approach for simulating the lateral kinematic distress of deepwater offshore pipelines[J]. Applied Ocean Research, 90: 101852. doi: 10.1016/j.apor.2019.101852 Dong Y K, Ma J J, Wang D, et al. 2019. Investigation of landslide in deep sea using material point method[J]. The Ocean Engineering, 37 (5): 141-147. http://en.cnki.com.cn/Article_en/CJFDTotal-HYGC201905016.htm Dong Y, Wang D, Randolph M F. 2017. Investigation of impact forces on pipeline by submarine landslide using material point method[J]. Ocean Engineering, 146 : 21-28. doi: 10.1016/j.oceaneng.2017.09.008 Fan N. 2019. Study on strength properties of submarine slides and their impact on pipelines[D]. Dalian: Dalian University of Technology. Guo X S, Nian T K, Gu Z D, et al. 2021. Evaluation methodology of laminar-turbulent flow state for fluidized material with special reference to submarine landslide[J]. Journal of Waterway, Port, Coastal and Ocean Engineering, 147(1): 04020048. doi: 10.1061/(ASCE)WW.1943-5460.0000616 Guo X S, Nian T K, Wang F W, et al. 2019a. Landslides impact reduction effect by using honeycomb-hole submarine pipeline[J]. Ocean Engineering, 187: 106155. doi: 10.1016/j.oceaneng.2019.106155 Guo X S, Zheng D F, Nian T K, et al. 2019b. Effect of different span heights on the pipeline impact forces induced by deep-sea landslides[J]. Applied Ocean Research, 87 : 38-46. doi: 10.1016/j.apor.2019.03.009 Guo X S. 2021. Study on the susceptibility of submarine seismic landslide and landslide-pipeline interaction[D]. Dalian: Dalian University of Technology. Hance J J. 2003. Development of a database and assessment of seafloor slope stability based on published literature[D]. Austin, Texas, USA: The University of Texas at Austin. Huo Y D, Nian T K, Jiao H B, et al. 2019. Seismic stability of submarine clay slopes based on upper bound approach[J]. Journal of Engineering Geology, 27 (2): 408-414. http://en.cnki.com.cn/Article_en/CJFDTotal-GCDZ201902022.htm Jiang S Y, Sheng J L, Chen G M, et al. 2020. Study on safety limits of the pipe-lines under submarine glide block[J]. Then Ocean Engi-neering, 38 (2): 128-134. Jing S D, Jin Y D. 2012. Application of side scan sonar to exploration of submarine pipeline landform characteristics[J]. Journal of Engineering Geology, 20 (5): 827-831. http://en.cnki.com.cn/Article_en/CJFDTOTAL-GCDZ201205026.htm Li C Y, Zhang W, Wu F D, et al. 2018. Run-out process simulation of submarine landslide using material point method[J]. Journal of Engineering Geology, 26 (S1): 114-119. Li H W, Wang L Z, Guo Z, et al. 2015. Drag force of submarine landslides mudflow impacting on a suspended pipeline[J]. The Ocean Engineering, 33 (6): 10-19. http://en.cnki.com.cn/Article_en/CJFDTotal-HYGC201506002.htm Li X, Liu Y K, Zhou J, et al. 2003. Experimental investigation and numerical simulation of dynamic response of free spanning submarine pipelines[J]. Engineering Mechanics, 20 (2): 21-25. http://d.wanfangdata.com.cn/Periodical/gclx200302005 Liu J, Gao W, Li P, et al. 2018. Research progress in submarine landslide and its enlightenment to study the seabed stability in the South China Sea[J]. Journal of Engineering Geology, 26 (S1): 120-127. Liu R, Guo S Z, Wang H, et al. 2013. Soil resistance acting on buried pipelines in Bohai Bay soft clay[J]. Chinese Journal of Geotechnical Engineering, 35 (5): 961-967. http://en.cnki.com.cn/Article_en/CJFDTOTAL-YTGC201305026.htm Masson D G, Harbitz C B, Wynn R B, et al. 2006. Submarine landslides: processes, triggers and hazard prediction[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 364(1845): 2009-2039. doi: 10.1098/rsta.2006.1810 Ni P, Mangalathu S. 2018. Fragility analysis of gray iron pipelines subjected to tunneling induced ground settlement[J]. Tunnelling and Underground Space Technology, 76 : 133-144. doi: 10.1016/j.tust.2018.03.014 Nian T K, Guo X S, Fan N, et al. 2018. Impact forces of submarine landslides on suspended pipelines considering the low-temperature environment[J]. Applied Ocean Research, 81 : 116-125. doi: 10.1016/j.apor.2018.09.016 Nian T K, Guo X S, Zheng D F, et al. 2019. Susceptibility assessment of regional submarine landslides triggered by seismic actions[J]. Applied Ocean Research, 93: 101964. doi: 10.1016/j.apor.2019.101964 Nian T K, Liu M, Liu B, et al. 2016. Stability analysis of clayey sloping seabed under extreme wave loads[J]. The Ocean Engineering, 34 (4): 9-15. http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYGC201604002.htm O′Rourke M J, Liu X. 2012. Seismic design of buried and offshore pipelines[R]. New York, USA: Multidisciplinary Center for Earthquake Engineering Research. Palmer A C, King R A. 2008. Subsea pipeline engineering[M]. 2nd edition. Tulsa, Oklahoma, USA: PennWell Books. Parker E J, Traverso C M, Moore R, et al. 2008. Evaluation of landslide impact on deepwater submarine pipelines[C]//Offshore Technology Conference, Houston, Texas, USA. Pei Y, He Y B, Li H, et al. 2015. Discuss about relationship between high-density turbidity current and sandy debris flow[J]. Geological Review, 61 (6): 1281-1292. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP201506010.htm Ramberg W, Osgood W R. 1943. Description of stress-strain curves by three parameters[R]. Washington, DC, United States: National Advisory Committee for Aeronautics(NACA). Randolph M F, Seo D, White D J. 2010. Parametric solutions for slide impact on pipelines[J]. Journal of Geotechnical and Geoen-viron-mental Engineering, 136 (7): 940-949. doi: 10.1061/(ASCE)GT.1943-5606.0000314 Shi J W, Wang Y, Chen Y H. 2018. A simplified method to estimate curvatures of continuous pipelines induced by normal fault movement[J]. Canadian Geotechnical Journal, 55 (3): 343-352. doi: 10.1139/cgj-2017-0044 Song X L, Zhao W, Nian T K, et al. 2020. Experiment simulation of submarine clayey slope failure induced by gas hydrate dissociation[J]. Journal of Shanghai Jiaotong University, 54 (1): 43-51. Sui T, Staunstrup L H, Carstensen S, et al. 2021. Span shoulder migration in three-dimensional current-induced scour beneath submerged pipelines[J]. Coastal Engineering, 164: 103776. doi: 10.1016/j.coastaleng.2020.103776 Sun Q L, Xie X N, Wu S G. 2021. Submarine landslides in the northern South China Sea: characteristics, geohazard evaluation and perspectives[J]. Earth Science Frontiers, 28 (2): 258-270. Wang L, Deng Q L. 2010. Mechanical analysis on the safety of gas-transporting pipeline caused by landslide deformation[J]. Journal of Engineering Geology, 18 (S1): 340-345. http://www.gcdz.org/EN/abstract/abstract11023.shtml Wang Y, Shi J W, Ng C W W. 2011. Numerical modeling of tunneling effect on buried pipelines[J]. Canadian Geotechnical Journal, 48 (7): 1125-1137. doi: 10.1139/t11-024 Wang Z T, Zhang Y, Yang Q, et al. 2019. Numerical analysis for impact of submarine landslides on pipelines[J]. Chinese Journal of Geotechnical Engineering, 41 (3): 567-573. http://www.sciencedirect.com/science/article/pii/S0141118718307557 Wu S G, Chen S S, Wang Z J, et al. 2008. Submarine landslide and risk evaluation on its instability in the deepwater continental margin[J]. Geoscience, 22 (3): 430-437. http://d.wanfangdata.com.cn/periodical/xddz200803013 Xie Y, Ma X F, Ning H F. 2017. Formation and damage mechanism of free spanning submarine pipeline[J]. Oil & Gas Storage and Transportation, 36 (12): 1436-1442. http://en.cnki.com.cn/Article_en/CJFDTotal-YQCY201712017.htm Xu W F, Che A L, Wang Z, et al. 2011. Destruction characteristic of seabed landslide during earthquake motion and its mechanism[J]. Journal of Shanghai Jiaotong University, 45 (5): 782-786. http://en.cnki.com.cn/Article_en/ http://search.cnki.net/down/default.aspx?filename=SHJT201105033&dbcode=CJFD&year=2011&dflag=pdfdown Yang B, Gao F P, Wu Y X. 2005. Numerical of the occurrence of pipeline spanning under the influence of steady current[J]. Shipbuilding of China, 45 (Z1): 281-288. Yu G L, Chen Q Q, Li Y H. 2007. Status and tendency of development of scour-prevention technique for submarine pipeline[J]. Water Resources and Hydropower Engineering, 38 (11): 30-33. http://en.cnki.com.cn/Article_en/CJFDTOTAL-SJWJ200711010.htm Yuan F, Li L L, Guo Z, et al. 2015. Landslide impact on submarine pipelines: analytical and numerical analysis[J]. Journal of Engineering Mechanics, 141(2): 4014109. doi: 10.1061/(ASCE)EM.1943-7889.0000826 Yuan F, Wang L Z, Guo Z, et al. 2012a. A refined analytical model for landslide or debris flow impact on pipelines. Part I: surface pipelines[J]. Applied Ocean Research, 35 : 95-104. doi: 10.1016/j.apor.2011.12.001 Yuan F, Wang L Z, Guo Z, et al. 2012b. A refined analytical model for landslide or debris flow impact on pipelines. Part Ⅱ: embedded pipelines[J]. Applied Ocean Research, 35 : 105-114. doi: 10.1016/j.apor.2011.12.002 Zakeri A, Høeg K, Nadim F. 2008. Submarine debris flow impact on pipelines—part Ⅰ: experimental investigation[J]. Coastal Engineering, 55 (12): 1209-1218. doi: 10.1016/j.coastaleng.2008.06.003 Zakeri A, Høeg K, Nadim F. 2009. Submarine debris flow impact on pipelines—part Ⅱ: numerical analysis[J]. Coastal Engineering, 56 (1): 1-10. doi: 10.1016/j.coastaleng.2008.06.005 Zakeri A. 2009. Review of state-of-the-art: drag forces on submarine pipelines and piles caused by landslide or debris flow impact[J]. Journal of Offshore Mechanics and Arctic Engineering, 131(1): 014001. doi: 10.1115/1.2957922 Zhao E J, Dong Y K, Tang Y Z, et al. 2021. Numerical investigation of hydrodynamic characteristics and local scour mechanism around submarine pipelines under joint effect of solitary waves and currents[J]. Ocean Engineering, 222: 108553. doi: 10.1016/j.oceaneng.2020.108553 Zhu H X, Randolph M F. 2011. Numerical analysis of a cylinder moving through rate-dependent undrained soil[J]. Ocean Engineering, 38 (7): 943-953. doi: 10.1016/j.oceaneng.2010.08.005 董友扣, 马家杰, 王栋, 等. 2019. 深海滑坡灾害的物质点法模拟[J]. 海洋工程, 37 (5): 141-147. https://www.cnki.com.cn/Article/CJFDTOTAL-HYGC201905016.htm 范宁. 2019. 海底滑坡体的强度特性及其对管线的冲击作用研究[D]. 大连: 大连理工大学. 郭兴森. 2021. 海底地震滑坡易发性与滑坡-管线相互作用研究[D]. 大连: 大连理工大学. 霍沿东, 年廷凯, 焦厚滨, 等. 2019. 基于极限分析上限方法的海底斜坡地震稳定性[J]. 工程地质学报, 27 (2): 408-414. doi: 10.13544/j.cnki.jeg.2017-621 姜诗源, 盛积良, 陈国明, 等. 2020. 海底滑坡作用下滩海管道结构安全分析[J]. 海洋工程, 38 (2): 128-134. https://www.cnki.com.cn/Article/CJFDTOTAL-HYGC202002015.htm 荆少东, 金永德. 2012. 侧扫声纳系统在管道穿越段海底地貌特征探测中的应用[J]. 工程地质学报, 20 (5): 827-831. doi: 10.3969/j.issn.1004-9665.2012.05.025 李宏伟, 王立忠, 国振, 等. 2015. 海底泥流冲击悬跨管道拖曳力系数分析[J]. 海洋工程, 33 (6): 10-19. https://www.cnki.com.cn/Article/CJFDTOTAL-HYGC201506002.htm 李昕, 刘亚坤, 周晶, 等. 2003. 海底悬跨管道动力响应的试验研究和数值模拟[J]. 工程力学, 20 (2): 21-25. doi: 10.3969/j.issn.1000-4750.2003.02.005 厉成阳, 张巍, 吴方东, 等. 2018. 海底滑坡运动全过程的物质点法模拟[J]. 工程地质学报, 26 (S1): 114-119. doi: 10.13544/j.cnki.jeg.2018117 刘杰, 高伟, 李萍, 等. 2018. 深海滑坡研究进展及我国南海海底稳定性研究的现状与思考[J]. 工程地质学报, 26 (S1): 120-127. doi: 10.13544/j.cnki.jeg.2018199 刘润, 郭绍曾, 王洪播, 等. 2013. 渤海湾软黏土对埋设海底管线约束力的研究[J]. 岩土工程学报, 35 (5): 961-967. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201305026.htm 年廷凯, 刘敏, 刘博, 等. 2016. 极端波浪条件下黏土质斜坡海床稳定性解析[J]. 海洋工程, 34 (4): 9-15. https://www.cnki.com.cn/Article/CJFDTOTAL-HYGC201604002.htm 裴羽, 何幼斌, 李华, 等. 2015. 高密度浊流和砂质碎屑流关系的探讨[J]. 地质论评, 61 (6): 1281-1292. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201506010.htm 宋晓龙, 赵维, 年廷凯, 等. 2020. 水合物分解条件下海底黏土质斜坡破坏实验模拟[J]. 上海交通大学学报, 54 (1): 43-51. https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT202001008.htm 孙启良, 解习农, 吴时国. 2021. 南海北部海底滑坡的特征、灾害评估和研究展望[J]. 地学前缘, 28 (2): 258-270. 王磊, 邓清禄. 2010. 滑坡作用对输气管道危害的静力学分析[J]. 工程地质学报, 18 (S1): 340-345. http://www.gcdz.org/article/id/11023 王忠涛, 张宇, 杨庆, 等. 2019. 海底滑坡对管线冲击力的数值分析[J]. 岩土工程学报, 41 (3): 567-573. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201903024.htm 吴时国, 陈珊珊, 王志君, 等. 2008. 大陆边缘深水区海底滑坡及其不稳定性风险评估[J]. 现代地质, 22 (3): 430-437. doi: 10.3969/j.issn.1000-8527.2008.03.013 谢英, 麻秀芬, 宁海峰. 2017. 海底悬跨管道形成及破坏机理[J]. 油气储运, 36 (12): 1436-1442. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY201712017.htm 许文锋, 车爱兰, 王治, 等. 2011. 地震荷载作用下海底滑坡特征及其机理[J]. 上海交通大学学报, 45 (5): 782-786. https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT201105033.htm 杨兵, 高福平, 吴应湘. 2004. 海流引起的海底管道周围砂质海床局部冲刷[J]. 中国造船, 45(Z1): 281-288. doi: 10.3969/j.issn.1000-4882.2004.z1.042 喻国良, 陈琴琴, 李艳红. 2007. 海底管道防冲刷保护技术的发展现状与趋势[J]. 水利水电技术, 38 (11): 30-33. doi: 10.3969/j.issn.1000-0860.2007.11.008 -