降压开采导致天然气水合物系统状态演化模拟实验

刘乐乐 李彦龙 张旭辉 罗大双 刘昌岭

刘乐乐, 李彦龙, 张旭辉, 等. 2021. 降压开采导致天然气水合物系统状态演化模拟实验[J].工程地质学报, 29(6): 1916-1925. doi: 10.13544/j.cnki.jeg.2021-0695
引用本文: 刘乐乐, 李彦龙, 张旭辉, 等. 2021. 降压开采导致天然气水合物系统状态演化模拟实验[J].工程地质学报, 29(6): 1916-1925. doi: 10.13544/j.cnki.jeg.2021-0695
Liu Lele, Li Yanlong, Zhang Xuhui, et al. 2021.Experimental study on gas hyirale system stale evolving dluring deyessuration[J]. Jourmal of Engineering Geology, 29(6): 1916-1925. doi: 10.13544/j.cnki.jeg.2021-0695
Citation: Liu Lele, Li Yanlong, Zhang Xuhui, et al. 2021.Experimental study on gas hyirale system stale evolving dluring deyessuration[J]. Jourmal of Engineering Geology, 29(6): 1916-1925. doi: 10.13544/j.cnki.jeg.2021-0695

降压开采导致天然气水合物系统状态演化模拟实验

doi: 10.13544/j.cnki.jeg.2021-0695
基金项目: 

国家重点研发计划政府间国际科技创新合作重点专项 2018YFE0126400

国家自然科学基金 41872136

国家自然科学基金 41976074

详细信息
    作者简介:

    刘乐乐(1986-),男,博士,研究员,硕士生导师,主要从事天然气水合物开采渗流力学方面的科研工作. E-mail: lele.liu@qnlm.cn

    通讯作者:

    李彦龙(1989-),男,博士,副研究员,硕士生导师,主要从事天然气水合物开采工程地质学方面的科研工作. E-mail: ylli@qnlm.ac

  • 中图分类号: P744.4

EXPERIMENTAL STUDY ON GAS HYDRATE SYSTEM STATE EVOLVING DURING DEPRESSURIZATION

Funds: 

the National Key Research and Development Project 2018YFE0126400

the National Natural Science Foundation of China 41872136

the National Natural Science Foundation of China 41976074

  • 摘要: 天然气水合物是一种重要的潜在替代能源,降压法是现阶段水合物开采的首选方法。水合物降压开采涉及传热、多相渗流、分解相变和储层变形等多个相互影响的物理效应,深入理解其在降压开采过程中的演化规律,对于促进水合物开采效率、实现商业化开发具有重要的指导意义。本文基于一维实验模拟系统,开展了水合物降压开采储层多物理场演化模拟实验,在非均匀温度条件下采用过量气法合成水合物,分析了水合物非均匀性分布特征,探讨了降压过程中样品孔隙压力和温度的演化规律,对比了产气过程与传热演化过程的对应关系。结果表明:水合物合成后温度分布呈两侧高中间低的抛物线形状,水合物分布具有中间多而两侧无的非均匀性特征,且温度回升具有由两侧向中间发展的特点;降压分解产气过程与传热演化过程具有良好的对应性,稳态产气阶段由传热效应控制。控制降压模式、以对流换热替代热传导等方式有益于提升水合物开采产气效率。
  • 图  1  天然气水合物开采多物理场演化模拟实验装置

    Figure  1.  Experimental apparatus for multi-physical-field evolution during gas hydrate recovery

    图  2  含水合物沉积物反应釜结构示意图

    Figure  2.  Schematic diagram of vessel for hydrate-bearing sediments

    图  3  甲烷水合物合成阶段压力随时间变化曲线

    Figure  3.  Pressures changing over elapsed time during methane hydrate formation

    图  4  甲烷水合物合成阶段温度随时间变化曲线

    Figure  4.  Temperatures changing over time during methane hydrate formation

    图  5  甲烷水合物合成后样品温度和压力分布情况

    Figure  5.  Temperature and pressure distributions along sample length after methane hydrate formation

    图  6  甲烷水合物合成后水合物、水和气三相含量分布

    Figure  6.  Saturation distributions of methane hydrate, water, and methane gas after methane hydrate formation

    图  7  降压分解孔隙压力演化

    Figure  7.  Pore pressure evolutions during depressurization

    图  8  降压分解温度演化

    Figure  8.  Temperature evolutions during depressurization

    图  9  降压分解累积产气量和产气速率演化

    Figure  9.  Evolutions of produced gas volume and velocity during depressurization

    图  10  降压分解传热演化

    Figure  10.  Heat transfer evolution during depressurization

    表  1  样品三相饱和度求解参数

    Table  1.   Parameters for calculating hydrate, water, and methane saturations within the sample

    参数名称 取值
    总进气量Vg*(标准状态SL) 76.7
    总进水量mw*/g 500
    孔隙度ϕ/% 39.9
    样品总体积V/cm3 2826.0
    水合物相平衡区域体积V2/cm3 1893.4
    左侧水合物非稳定区域体积V1/cm3 310.9
    右侧水合物非稳定区域体积V3/cm3 621.7
    水合物密度ρh/g·cm-3 0.91*
    孔隙水密度ρw/g·cm-3 1
    水合物摩尔质量Mh/g·mol-1 119.5*
    孔隙水摩尔质量Mw/g·mol-1 18
    水合物数Nh 5.75*
    气体常数R/J·mol-1·K-1 8.31
    气体摩尔体积VSL/SL·mol-1 22.4
    孔隙压力Pg1Pg2Pg3/MPa 3.54
    水合物相平衡区域温度T2/℃ 式(1)且0.11≤x≤0.78
    左侧水合物非稳定区域温度T1/℃ 式(1)且0<x<0.11
    右侧水合物非稳定区域温度T3/℃ 式(1)且0.78<x≤1
    *数值来源于(业渝光等,2011)
    下载: 导出CSV
  • Feng J C, Wang Y, Li X S. 2016. Hydrate dissociation induced by depressurization in conjunction with warm brine stimulation in cubic hydrate simulator with silicasand[J]. Applied Energy, 174 : 181-191. doi: 10.1016/j.apenergy.2016.04.090
    He J X, Zhong C M, Yao Y J, et al. 2020. The exploration and production test of gas hydrate and its research progress and exploitation prospect in the northern South ChinaSea[J]. Marine Geology Frontiers, 36 (12): 1-14.
    Hong H, Pooladi-Darvish M, Bishnoi P R. 2003. Analytical modelling of gas production from hydrates in porousmedia[J]. Journal of Canadian Petroleum Technology, 42 (11): 45-56. doi: 10.2118/03-11-05
    Konno Y, Masuda Y, Akamine K, et al. 2016. Sustainable gas production from methane hydrate reservoirs by the cyclic depressurization method[J]. Energy Conversion and Management, 108 : 439-445. doi: 10.1016/j.enconman.2015.11.030
    Lee J, Park S, Sung W. 2010. An experimental study on the productivity of dissociated gas from gas hydrate by depressurization scheme. Energy Conversion and Management, 51 (12): 2510-2515. doi: 10.1016/j.enconman.2010.05.015
    Li D L, Liang D Q, Fan S S, et al. 2008. In situ hydrate dissociation using microwave heating: Preliminarystudy[J]. Energy Conversion and Management, 49 (8): 2207-2213. doi: 10.1016/j.enconman.2008.01.031
    Li J, Ye J, Qin X, et al. 2018. The first offshore natural gas hydrate production test in South ChinaSea[J]. China Geology, 1 (1): 5-16. doi: 10.31035/cg2018003
    Li S D, Li X, Wang S J, et al. 2020. A novel method for natural gas hydrate production: Depressurization and backfilling with in-situ supple-mentalhear[J]. Journal of Engineering Geology, 28 (2): 282-293.
    Li S D, Sun Y M, Chen W C, et al. 2019. Analyses of gas production methods and offshore production tests of natural gashydrates[J]. Journal of Engineering Geology, 27 (1): 55-68. http://en.cnki.com.cn/Article_en/CJFDTotal-GCDZ201901007.htm
    Li Y L, He C Q, Wu N Y, et al. 2021a. Laboratory study on hydrate production using a slow, multistage depressurization strategy[J]. Geofluids, (3): 1-13. http://www.researchgate.net/publication/349591343_Laboratory_Study_on_Hydrate_Production_Using_a_Slow_Multistage_Depressurization_Strategy
    Li Y L, Liu L, Jin Y, et al. 2021b. Characterization and development of marine natural gas hydrate reservoirs in marine clayey-silt reservoirs: A review anddiscussion[J]. Advances in Geo-Energy Research, 5 : 75-86. doi: 10.46690/ager.2021.01.08
    Li Y L, Wu N Y, He C Q, et al. 2021c. Nucleation probability and memory effect of methane-propane mixed gashydrate[J]. Fuel, 291: 120103. doi: 10.1016/j.fuel.2020.120103
    Li Y L, Ning F, Wu N, et al. 2020. Protocol for sand control screen design of production wells for clayey silt hydrate reservoirs: A casestudy[J]. Energy Science and Engineering, 8 (5): 1438-1449. doi: 10.1002/ese3.602
    Li Y L, Wu N Y, Ning F, et al. 2019. A sand-production control system for gas production from clayey silt hydratereservoirs[J]. China Geology, 2 : 1-13. doi: 10.31035/cg2018078
    Liu C L, Sun Y B. 2021. Characteristics of marine gas hydrate reservoir and its resource evaluationmethods[J]. Marine Geology & Quantenary Geology, 41 (5): 44-57.
    Liu J, Liu L H, Wu N Y, et al. 2021. Evolution of gas hydrate stability zone in the deep water of Dongsha sea area since the Last GlaciationMaximum[J]. Marine Geology & Quantenary Geology, 41 (2): 146-155.
    Liu L L, Lu X B, Zhang X H. 2013. An experimental study of seepage front due to methane hydrate dissociation by depressurization in sandysediment[J]. Natural Gas Industry, 33 (11): 130-136. http://www.researchgate.net/profile/Lele_Liu3/publication/280632369_An_experimental_study_of_seepage_front_due_to_methane_hydrate_dissociation_by_depressurization_in_sandy_sediments_%28In_Chinese%29/links/55e4fbeb08aede0b57358728.pdf
    Liu L L, Lu X B, Zhang X H. 2014. Numerical analysis on evolution of natural gas hydrate decomposition region in hydrate-bearingsediment[J]. Acta Petrolei Sinica, 35 (5): 941-951. http://www.researchgate.net/profile/Lele_Liu3/publication/280632212_Numerical_analysis_on_evolution_of_natural_gas_hydrate_decomposition_region_in_hydrate-bearing_sediments_(In_Chinese)/links/55e4f9bd08aecb1a7ccb90a2.pdf
    Liu L L, Lu X B, Zhang X H. 2015. On the hydrate dissociation front evolution in simulation experiment of depressurization mining[J]. Journal of Experimental Mechanics, 30 (4): 469-476. http://www.researchgate.net/profile/Lele_Liu3/publication/281380819_On_the_hydrate_dissociation_front_evolution_in_simulation_experiment_of_depressurization_mining_In_Chinese/links/55e4f96508aede0b573586e5/On-the-hydrate-dissociation-front-evolution-in-simulation-experiment-of-depressurization-mining-In-Chinese.pdf
    Liu L L, Lu X B, Zhang X H. 2015. A theoretical model for predicting the spatial distribution of gas hydrate dissociation under the combination of depressurization and heating without the discontinuous interfaceassumption[J]. Journal of Petroleum Science and Engineering, 133 : 589-601. doi: 10.1016/j.petrol.2015.07.005
    Mao P, Wu N, Sun J, et al. 2021. Numerical simulations of depressurization-induced gas production from hydrate reservoirs at site GMGS3-W19 with different free gas saturations in the northern South ChinaSea[J]. Energy Science and Engineering, 9 : 1416-1439. doi: 10.1002/ese3.903
    Merey S, Sinayuc C. 2017. Numerical simulations for short-term depressurization production test of two gas hydrate sections in the BlackSea[J]. Journal of Natural Gas Science and Engineering, 44 : 77-95. doi: 10.1016/j.jngse.2017.04.011
    Numasawa M, Yamamoto K, Yasuda M, et al. 2008. Objectives and operation overview of the 2007 JOGMEC/NRCAN/AURORA Mallik 2L-38 gas hydrate production test[C]//International Conference on Gas Hydrates. Vancouver, British Columbia, Canada: [s. n. ].
    Peng Y Y, Su Z, Liu L H, et al. 2020. Numerical study on the movement of the decomposition front of natural gas hydrate under depressurization[J]. Marine Geology & Quantenary Geology, 40 (6): 198-207.
    Rahim I, Nomura S, Mukasa S, et al. 2015. Decomposition of methane hydrate for hydrogen production using microwave and radio frequency in-liquid plasmamethods[J]. Applied Thermal Engineering, 90 : 120-126. doi: 10.1016/j.applthermaleng.2015.06.074
    Schoderbek D, Farrell H, Hester K, et al. 2013. ConocoPhillips gas hydrate production test final technicalreport[R]. Houston, TX(United States): Conoco Phillips Co.
    Sloan E D. 2003. Fundamental principles and applications of natural gashydrates[J]. Nature, 426 : 353-363. doi: 10.1038/nature02135
    Sun J Y, Ye Y G, Liu C L, et al. 2010. Experimental research of gas hydrate dissociation in sediment by depressurization method[J]. Geoscience, 24 (3): 614-621. http://en.cnki.com.cn/Article_en/CJFDTOTAL-XDDZ201003029.htm
    Sun X, Nanchary N, Mohanty K K. 2005.1-D modeling of hydrate depressurization in porousmedia[J]. Transport in Porous Media, 58 : 315-338. doi: 10.1007/s11242-004-1410-x
    Terzariol M, Goldsztein G, Santamarina J C. 2017. Maximum recoverable gas from hydrate bearing sediments bydepressurization[J]. Energy, 141 : 1622-1628. doi: 10.1016/j.energy.2017.11.076
    Wan Y Z, Wu N Y, Hu G W, et al. 2018. Reservoir stability in the process of natural gas hydrate production by depressurization in the Shenhu area of the South ChinaSea[J]. Natural Gas Industry, 38 (4): 117-128. http://www.researchgate.net/publication/327988692_Reservoir_stability_in_the_process_of_natural_gas_hydrate_production_by_depressurization_in_the_Shenhu_area_of_the_South_China_Sea
    Wang B, Dong H, Fan Z, et al. 2020. Numerical analysis of microwave stimulation for enhancing energy recovery from depressurized methane hydratesediments[J]. Applied Energy, 262: 114559. doi: 10.1016/j.apenergy.2020.114559
    Wang B, Dong H, Liu Y, et al. 2018. Evaluation of thermal stimulation on gas production from depressurized methane hydrate deposits[J]. Applied Energy, 227 : 710-718. doi: 10.1016/j.apenergy.2017.08.005
    Wu N Y, Huang L, Hu G W, et al. 2017. Geological controlling factors and scientific challenge for offshore gas hydrateexploitation[J]. Marine Geology & Quantenary Geology, 37 (5): 1-11. http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYDZ201705001.htm
    Wu N Y, Li Y L, Liu L L, et al. 2021. Controlling factors and research prospect on creeping behaviors of marine natural gas hydrate-bearing-strata[J]. Marine Geology & Quantenary Geology, 41 (5): 3-11.
    Wu N Y, Li Y L, Wan Y Z, et al. 2020. Prospect of marine natural gas hydrate stimulation theory and technologysystem[J]. Natural Gas Industry, 40 (8): 100-115. http://www.sciencedirect.com/science/article/pii/S2352854021000243
    Wu N Y, Li Y L, Chen Q, et al. 2021. Sand production management during marine natural gas hydrate exploitation: review and an innovativesolution[J]. Energy & Fuels, 03822. doi: 10.1021/acs.energyfuels.0c03822
    Yamamoto K, Terao Y, Fujii T, et al. 2014. Operational overview of the first offshore production test of methane hydrates in the Eastern nankai Trough[C]//Offshore Technology Conference. Houston, Texas, USA: [s. n. ].
    Yang X, Sun C Y, Su K H, et al. 2012. A three-dimensional study on the formation and dissociation of methane hydrate in porous sediment bydepressurization[J]. Energy Conversion and Management, 56 : 1-7. doi: 10.1016/j.enconman.2011.11.006
    Ye J, Qin X, Xie W, et al. 2020. The second natural gas hydrate production test in the South ChinaSea[J]. China Geology, 3 : 197-209. http://d.wanfangdata.com.cn/periodical/zgdz-e202002002
    Ye Y G, Liu C L. 2011. Natural gas hydrates experimental techniques and theirapplications[M]. Beijing: Geology Press.
    Zhang Y, Wan Y, Liu L, et al. 2021. Changes in reaction surface during the methane hydrate dissociation and its implications for hydrateproduction[J]. Energy, 230: 120848. doi: 10.1016/j.energy.2021.120848
    Zhao J, Liu Y, Guo X, et al. 2020. Gas production behavior from hydrate-bearing fine natural sediments through optimized step-wisedepressurization[J]. Applied Energy, 260: 114275. doi: 10.1016/j.apenergy.2019.114275
    何家雄, 钟灿鸣, 姚永坚, 等. 2020. 南海北部天然气水合物勘查试采及研究进展与勘探前景[J]. 海洋地质前沿, 36 (12): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT202012001.htm
    李守定, 李晓, 王思敬, 等. 2020. 天然气水合物原位补热降压充填开采方法[J]. 工程地质学报, 28 (2): 282-293. doi: 10.13544/j.cnki.jeg.2020-061
    李守定, 孙一鸣, 陈卫昌, 等. 2019. 天然气水合物开采方法及海域试采分析[J]. 工程地质学报, 27 (1): 55-68. doi: 10.13544/j.cnki.jeg.2019-065
    刘昌岭, 孙运宝. 2021. 海洋天然气水合物储层特性及其资源量评价方法[J]. 海洋地质与第四纪地质, 41 (5): 44-57. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ202105005.htm
    刘杰, 刘丽华, 吴能友, 等. 2021. 南海东沙海域深水区末次冰期以来天然气水合物稳定带演化[J]. 海洋地质与第四纪地质, 41 (2): 146-155. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ202102015.htm
    刘乐乐, 鲁晓兵, 张旭辉. 2013. 砂土沉积物中甲烷水合物降压分解渗流阵面实验[J]. 天然气工业, 33 (11): 130-136. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201311028.htm
    刘乐乐, 鲁晓兵, 张旭辉. 2014. 天然气水合物分解区演化数值分析[J]. 石油学报, 35 (5): 941-951. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201405015.htm
    刘乐乐, 鲁晓兵, 张旭辉. 2015. 降压开采模拟试验的水合物分解阵面演化过程[J]. 实验力学, 30 (4): 469-476. https://www.cnki.com.cn/Article/CJFDTOTAL-SYLX201504008.htm
    彭盈钰, 苏正, 刘丽华, 等. 2020. 天然气水合物降压开采分解前缘移动数值研究[J]. 海洋地质与第四纪地质, 40 (6): 198-207. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ202006018.htm
    孙建业, 业渝光, 刘昌岭, 等. 2010. 沉积物中天然气水合物减压分解实验[J]. 现代地质, 24 (3): 614-621. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201003029.htm
    万义钊, 吴能友, 胡高伟, 等. 2018. 南海神狐海域天然气水合物降压开采过程中储层的稳定性[J]. 天然气工业, 38 (4): 117-128. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201804021.htm
    吴能友, 黄丽, 胡高伟, 等. 2017. 海域天然气水合物开采的地质控制因素和科学挑战[J]. 海洋地质与第四纪地质, 37 (5): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201705001.htm
    吴能友, 李彦龙, 刘乐乐, 等. 2021. 海洋天然气水合物储层蠕变行为的主控因素与研究展望[J]. 海洋地质与第四纪地质, 41 (5): 3-11. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ202105002.htm
    吴能友, 李彦龙, 万义钊, 等. 2020. 海域天然气水合物开采增产理论与技术体系展望[J]. 天然气工业, 40 (8): 100-115. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202008013.htm
    业渝光, 刘昌岭. 2011. 天然气水合物实验技术及应用[M]. 北京: 地质出版社.
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  182
  • HTML全文浏览量:  18
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-25
  • 修回日期:  2021-12-03
  • 刊出日期:  2021-12-25

目录

    /

    返回文章
    返回