GLOBAL RESEARCH TRENDS IN SUBMARINE LANDSLIDES: A BIBLIOMETRIC ANALYSIS BASED ON WEB OF SCIENCE PUBLICATIONS
-
摘要: 本文利用文献计量分析平台和可视化技术,定量分析了2000~2021年海底滑坡领域的研究特征,揭示了不同时间段的研究变化和发展趋势。结果表明: (1)近20年间海底滑坡领域的科研产出数量快速增长,中国是海底滑坡领域发文量增长最快的国家,与其他国家合作关系也比较密切。(2)对比分析中、美研究机构发现美国的研究机构最多,但中国的研究机构与国内外其他机构合作最多,影响力相对较大。(3)国内外近20年来在海底滑坡领域的研究基本保持一致,但最近几年在触发机制研究中,全球学者更关注海啸诱发海底滑坡,而中国学者更关注水合物分解引起的海底滑坡,这将是未来海底滑坡领域研究的新趋势。
-
关键词:
- 海底滑坡 /
- Web of Science /
- CiteSpace /
- 文献计量分析
Abstract: The bibliometric analysis platform and visualization technology are used to quantitatively analyze the research characteristics in the field of submarine landslides from 2000 to 2021, and further reveal these research changes and development trends in different periods of time. The results show that: (1)The number of scientific research outputs in the field of submarine landslides has grown rapidly during the past 20 years. China is the country with the fastest growth on the submarine landslides publications,and has relatively closer cooperation with other countries. (2)By analyzing the research institutions of China and the United States,it is found that the latter has the largest number of research institutions. China's research institutions have most cooperation with other research institutions at home and abroad,and are comparatively influential. (3)The research fields on submarine landslides for the scientists at home and abroad in the past 20 years have been basically consistent. However,on the trigger mechanism,the foreign scholars have paid more attention to the tsunami-induced submarine landslides in recent years. Chinese scholars have more focused on those caused by hydrate decomposition,which can be the new trend in the future researches on submarine landslides.-
Key words:
- Submarine landslide /
- Web of Science /
- CiteSpace /
- Bibliometric analysis
-
表 1 3个阶段海底滑坡Top10高发文量国家分布
Table 1. Top10 countries in product of articles in the three period
2000~2006年 2007~2013年 2014~2021年 国家 发文量n1/篇 n1/N1/% 国家 发文量n2/篇 n2/N2/% 国家 发文量n3/篇 n3/N3/% 美国 138 39.542 美国 132 21.782 中国 259 24.737 挪威 55 15.759 英国 90 14.851 美国 250 23.878 英国 45 12.894 法国 89 14.686 英国 170 16.237 法国 32 9.169 意大利 84 13.861 法国 113 10.793 西班牙 30 8.596 德国 82 13.531 德国 112 10.697 加拿大 28 8.023 挪威 54 8.911 意大利 98 9.36 意大利 23 6.59 西班牙 46 7.591 日本 73 6.972 德国 22 6.304 加拿大 40 6.601 西班牙 69 6.59 日本 16 4.585 中国 35 5.776 加拿大 67 6.399 新西兰 13 3.725 澳大利亚 29 4.785 挪威 58 5.54 N1=349(2000~2006年总发文量); N2=606(2007~2013年总发文量); N3=1047(2014~2021年总发文量) 表 2 3个阶段海底滑坡触发机制研究发文量
Table 2. Research output on trigger mechanism in three periods
触发机制 发文量 2000~2006年 2007~2013年 2014~2021年 世界 中国 世界 中国 世界 中国 tsunami 132 1 212 6 391 57 wave 95 1 172 13 321 73 earthquake 112 1 167 11 306 49 gas hydrate 27 1 63 10 121 59 -
Dong Y K,Wang D,Randolph M F. 2017. Investigation of impact forces on pipeline by submarine landslide using material point method[J]. Ocean Engineering,146 (1): 21-28. http://www.sciencedirect.com/science?_ob=ShoppingCartURL&_method=add&_eid=1-s2.0-S0029801817305279&originContentFamily=serial&_origin=article&_ts=1506605749&md5=7c29c1dd9977410462bd8e453e6cef9c Dong Y K, Wang D, Randolph M F. 2020. Quantification of impact forces on fixed mudmats from submarine landslides using the material point method[J]. Applied Ocean Research, 102: 102227. doi: 10.1016/j.apor.2020.102227 Elger J, Berndt C, Rupke L, et al. 2018. Submarine slope failures due to pipe structure formation[J]. Nature Communications, 9(1): 715. doi: 10.1038/s41467-018-03176-1 Fan N, Sahdi F, Zhang W, et al. 2021. Effect of pipeline-seabed gaps on the vertical forces of a pipeline induced by submarine slide impact[J]. Ocean Engineering, 221(6): 108506. http://www.sciencedirect.com/science/article/pii/S002980182031413X Guo J Y, Guan J. 2018. Global research output in geological engineering: A bibliometric analysis of Web of science publications[J]. Journal of Engineering Geology, 26 (5): 1397-1407. http://en.cnki.com.cn/Article_en/CJFDTotal-GCDZ201805037.htm Guo X S, Nian T K, Fan N, et al. 2021. Optimization design of a honeycomb-hole submarine pipeline under a hydrodynamic landslide impact[J]. Marine Georesources & Geotechnology, 39 (9): 1055-1070. doi: 10.1080/1064119X.2020.1801919 Guo X S, Zheng D F, Nian T K, et al. 2019. Large-scale seafloor stability evaluation of the northern continental slope of South China Sea[J]. Marine Georesources and Geotechnology, (4): 1-14. doi: 10.1080/1064119X.2019.1632996 Hsu S K, Kuo J, Lo C L, et al. 2008. Turbidity currents, submarine landslides and the 2006 pingtung earthquake off SW Taiwan[J]. Terrestrial Atmospheric & Oceanic Sciences, 19 (6): 767-772. Huo Y D, Nian T K, Jiao H B, et al. 2019. Seismic stability of submarine clay slopes based on upper bound approach[J]. Journal of Engineering Geology, 27 (2): 408-414. http://en.cnki.com.cn/Article_en/CJFDTotal-GCDZ201902022.htm Li C Y, Zhang W, Wu F D, et al. 2018. Run-out process simulation of submarine landslide using material point method[J]. Journal of Engineering Geology, 26 (S1): 114-119. Li S D, Li X, Wang S J, et al. 2020. A novel method for natural gas hydrate production: Depressurization and backfilling with in-situ supplemental heat[J]. Journal of Engineering Geology, 28 (2): 282-293. Li S D, Sun Y M, Chen W C, et al. 2019. Analyses of gas production methods and offshore production tests of natural gas hydrates[J]. Journal of Engineering Geology, 27 (1): 55-68. http://en.cnki.com.cn/Article_en/CJFDTotal-GCDZ201901007.htm Liu J, Gao W, Li P, et al. 2018. Rearch progress in submarine landslide and its enlightenment to study the seabed stability in the South China Sea[J]. Journal of Engineering Geology, 26 (S1): 120-127. Liu R, Wang X Y. 2018. Lateral global buckling high-order mode analysis of a submarine pipeline with imperfection[J]. Applied Ocean Research, 73 : 107-126. doi: 10.1016/j.apor.2018.01.014 Nian T K, Guo X S, Fan N, et al. 2018. Impact forces of submarine landslides on suspended pipelines considering the low-temperature environment[J]. Applied Ocean Research, 81 : 116-125. doi: 10.1016/j.apor.2018.09.016 Nian T K, Guo X S, Zheng D F, et al. 2019. Susceptibility assessment of regional submarine landslides triggered by seismic actions[J]. Applied Ocean Research, 93: 101964. doi: 10.1016/j.apor.2019.101964 Randolph M F, Gaudin C, Gourvenec S M, et al. 2011. Recent advances in offshore geotechnics for deep water oil and gas developments[J]. Ocean Engineering, 38 (7): 818-834. doi: 10.1016/j.oceaneng.2010.10.021 Shi Y M, Gao F P, Wang N, et al. 2021. Coupled flow-seepage-elastoplastic modeling for competition mechanism between lateral instability and tunnel erosion of a submarine pipeline[J]. Journal of Marine Science and Engineering, 9(8): 889. doi: 10.3390/jmse9080889 Urgeles R, Leynaud D, Lastras G, et al. 2006. Back-analysis and failure mechanisms of a large submarine slide on the ebro slope, NW Mediterranean[J]. Marine Geology, 226(3-4): 185-206. doi: 10.1016/j.margeo.2005.10.004 Vanneste M, Sultan N, Garziglia S, et al. 2014. Seafloor instabilities and sediment deformation processes: The need for integrated, multi-disciplinary investigations[J]. Marine Geology, 352 : 183-214. doi: 10.1016/j.margeo.2014.01.005 Wu S G, Wang J L. 2018. On the China's successful gas production test from marine gas hydrate reservoirs[J]. Chinese Science Bulletin, 63 (1): 2-8. doi: 10.1360/N972017-00645 Xiu Z X, Liu L J, Li X S, et al. 2016. Slope stability analysis of submarine canyon area along pipeline route of LIWAN3-1 gasfield[J]. Journal of Engineering Geology, 24 (4): 535-541. http://en.cnki.com.cn/Article_en/CJFDTOTAL-GCDZ201604008.htm Zheng D F, Nian T K, Liu B, et al. 2019. Investigation of the stability of submarine sensitive clay slopes under wave-induced pressure[J]. Marine Georesources & Geotechnology, 37 (1): 116-127. http://www.onacademic.com/detail/journal_1000040884051410_9bfc.html Zhu C Q, Jia Y G, Liu X L, et al. 2015. Classfication and genetic mechanism of submarine landslide: a review[J]. Marine Geology & Quaternary Geology, 35 (6): 153-163. http://www.researchgate.net/publication/287948956_Classification_and_Genetic_Mechanism_of_Submarine_Landslide_A_Review 郭静芸, 关静. 2018. 基于Web of Science数据库的地质工程研究文献计量分析[J]. 工程地质学报, 26 (5): 1397-1407. doi: 10.13544/j.cnki.jeg.2018-301 霍沿东, 年廷凯, 焦厚滨, 等. 2019. 基于极限分析上限方法的海底斜坡地震稳定性[J]. 工程地质学报, 27 (2): 408-414. doi: 10.13544/j.cnki.jeg.2017-621 厉成阳, 张巍, 吴方东, 等. 2018. 海底滑坡运动全过程的物质点法模拟[J]. 工程地质学报, 26 (S1): 114-119. doi: 10.13544/j.cnki.jeg.2018117 李守定, 李晓, 王思敬, 等. 2020. 天然气水合物原位补热降压充填开采方法[J]. 工程地质学报, 28 (2): 282-293. doi: 10.13544/j.cnki.jeg.2020-061 李守定, 孙一鸣, 陈卫昌, 等. 2019. 天然气水合物开采方法及海域试采分析[J]. 工程地质学报, 27 (1): 55-68. doi: 10.13544/j.cnki.jeg.2019-065 刘杰, 高伟, 李萍, 等. 2018. 深海滑坡研究进展及我国南海海底稳定性研究的现状与思考[J]. 工程地质学报, 26(S1): 120-127. doi: 10.13544/j.cnki.jeg.2018199 吴时国, 王吉亮. 2018. 南海神狐海域天然气水合物试采成功后的思考[J]. 科学通报, 63 (1): 2-8. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201801003.htm 修宗祥, 刘乐军, 李西双, 等. 2016. 荔湾3-1气田管线路由海底峡谷段斜坡稳定性分析[J]. 工程地质学报, 24 (4): 535-541. doi: 10.13544/j.cnki.jeg.2016.04.007 朱超祁, 贾永刚, 刘晓磊, 等. 2015. 海底滑坡分类及成因机制研究进展[J]. 海洋地质与第四纪地质, 35 (6): 153-163. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201506023.htm -